| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 |  |-  ( A = Q -> ( A Btwn <. Q , x >. <-> Q Btwn <. Q , x >. ) ) | 
						
							| 2 | 1 | orbi1d |  |-  ( A = Q -> ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) <-> ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) ) | 
						
							| 3 | 2 | anbi1d |  |-  ( A = Q -> ( ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) <-> ( ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) | 
						
							| 4 | 3 | rexbidv |  |-  ( A = Q -> ( E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) <-> E. x e. ( EE ` N ) ( ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) | 
						
							| 5 |  | simp1 |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 6 |  | simp2 |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) | 
						
							| 7 | 6 | ancomd |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) | 
						
							| 8 |  | axsegcon |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> E. a e. ( EE ` N ) ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) | 
						
							| 9 | 5 7 7 8 | syl3anc |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. a e. ( EE ` N ) ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A =/= Q ) -> E. a e. ( EE ` N ) ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) | 
						
							| 11 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 12 |  | simpr |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) -> a e. ( EE ` N ) ) | 
						
							| 13 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) -> Q e. ( EE ` N ) ) | 
						
							| 14 |  | simpl3 |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) -> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 15 |  | axsegcon |  |-  ( ( N e. NN /\ ( a e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) ) | 
						
							| 16 | 11 12 13 14 15 | syl121anc |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) -> E. x e. ( EE ` N ) ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> E. x e. ( EE ` N ) ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) ) | 
						
							| 18 |  | anass |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) ) | 
						
							| 19 |  | df-3an |  |-  ( ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) <-> ( ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) /\ Q Btwn <. a , x >. ) ) | 
						
							| 20 |  | simpr1 |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> A =/= Q ) | 
						
							| 21 |  | simpr2r |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> <. Q , a >. Cgr <. A , Q >. ) | 
						
							| 22 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 23 |  | simpl2l |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) | 
						
							| 24 |  | simprl |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> a e. ( EE ` N ) ) | 
						
							| 25 |  | simpl2r |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 26 |  | cgrdegen |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ a e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( <. Q , a >. Cgr <. A , Q >. -> ( Q = a <-> A = Q ) ) ) | 
						
							| 27 | 22 23 24 25 23 26 | syl122anc |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( <. Q , a >. Cgr <. A , Q >. -> ( Q = a <-> A = Q ) ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> ( <. Q , a >. Cgr <. A , Q >. -> ( Q = a <-> A = Q ) ) ) | 
						
							| 29 | 21 28 | mpd |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> ( Q = a <-> A = Q ) ) | 
						
							| 30 | 29 | necon3bid |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> ( Q =/= a <-> A =/= Q ) ) | 
						
							| 31 | 20 30 | mpbird |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> Q =/= a ) | 
						
							| 32 | 31 | necomd |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> a =/= Q ) | 
						
							| 33 |  | simpr2l |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> Q Btwn <. A , a >. ) | 
						
							| 34 | 22 23 25 24 33 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> Q Btwn <. a , A >. ) | 
						
							| 35 |  | simpr3 |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> Q Btwn <. a , x >. ) | 
						
							| 36 |  | simprr |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> x e. ( EE ` N ) ) | 
						
							| 37 |  | btwnconn2 |  |-  ( ( N e. NN /\ ( a e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( a =/= Q /\ Q Btwn <. a , A >. /\ Q Btwn <. a , x >. ) -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) ) | 
						
							| 38 | 22 24 23 25 36 37 | syl122anc |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( a =/= Q /\ Q Btwn <. a , A >. /\ Q Btwn <. a , x >. ) -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> ( ( a =/= Q /\ Q Btwn <. a , A >. /\ Q Btwn <. a , x >. ) -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) ) | 
						
							| 40 | 32 34 35 39 | mp3and |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) | 
						
							| 41 | 19 40 | sylan2br |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) /\ Q Btwn <. a , x >. ) ) -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) | 
						
							| 42 | 41 | expr |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> ( Q Btwn <. a , x >. -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) ) | 
						
							| 43 | 42 | anim1d |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> ( ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) | 
						
							| 44 | 18 43 | sylanb |  |-  ( ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> ( ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) | 
						
							| 45 | 44 | an32s |  |-  ( ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) /\ x e. ( EE ` N ) ) -> ( ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) | 
						
							| 46 | 45 | reximdva |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> ( E. x e. ( EE ` N ) ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) | 
						
							| 47 | 17 46 | mpd |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) | 
						
							| 48 | 47 | expr |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ A =/= Q ) -> ( ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) | 
						
							| 49 | 48 | an32s |  |-  ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A =/= Q ) /\ a e. ( EE ` N ) ) -> ( ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) | 
						
							| 50 | 49 | rexlimdva |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A =/= Q ) -> ( E. a e. ( EE ` N ) ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) | 
						
							| 51 | 10 50 | mpd |  |-  ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A =/= Q ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) | 
						
							| 52 |  | simp2l |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) | 
						
							| 53 |  | simp3 |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 54 |  | axsegcon |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( Q Btwn <. Q , x >. /\ <. Q , x >. Cgr <. B , C >. ) ) | 
						
							| 55 | 5 52 52 53 54 | syl121anc |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( Q Btwn <. Q , x >. /\ <. Q , x >. Cgr <. B , C >. ) ) | 
						
							| 56 |  | orc |  |-  ( Q Btwn <. Q , x >. -> ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) | 
						
							| 57 | 56 | anim1i |  |-  ( ( Q Btwn <. Q , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> ( ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) | 
						
							| 58 | 57 | reximi |  |-  ( E. x e. ( EE ` N ) ( Q Btwn <. Q , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> E. x e. ( EE ` N ) ( ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) | 
						
							| 59 | 55 58 | syl |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) | 
						
							| 60 | 4 51 59 | pm2.61ne |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) |