Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( A = Q -> ( A Btwn <. Q , x >. <-> Q Btwn <. Q , x >. ) ) |
2 |
1
|
orbi1d |
|- ( A = Q -> ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) <-> ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) ) |
3 |
2
|
anbi1d |
|- ( A = Q -> ( ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) <-> ( ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) |
4 |
3
|
rexbidv |
|- ( A = Q -> ( E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) <-> E. x e. ( EE ` N ) ( ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) |
5 |
|
simp1 |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) |
6 |
|
simp2 |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
7 |
6
|
ancomd |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) |
8 |
|
axsegcon |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> E. a e. ( EE ` N ) ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) |
9 |
5 7 7 8
|
syl3anc |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. a e. ( EE ` N ) ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) |
10 |
9
|
adantr |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A =/= Q ) -> E. a e. ( EE ` N ) ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) |
11 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) -> N e. NN ) |
12 |
|
simpr |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) -> a e. ( EE ` N ) ) |
13 |
|
simpl2l |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) -> Q e. ( EE ` N ) ) |
14 |
|
simpl3 |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) -> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
15 |
|
axsegcon |
|- ( ( N e. NN /\ ( a e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) ) |
16 |
11 12 13 14 15
|
syl121anc |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) -> E. x e. ( EE ` N ) ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) ) |
17 |
16
|
adantr |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> E. x e. ( EE ` N ) ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) ) |
18 |
|
anass |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) <-> ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) ) |
19 |
|
df-3an |
|- ( ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) <-> ( ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) /\ Q Btwn <. a , x >. ) ) |
20 |
|
simpr1 |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> A =/= Q ) |
21 |
|
simpr2r |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> <. Q , a >. Cgr <. A , Q >. ) |
22 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> N e. NN ) |
23 |
|
simpl2l |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) |
24 |
|
simprl |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> a e. ( EE ` N ) ) |
25 |
|
simpl2r |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
26 |
|
cgrdegen |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ a e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( <. Q , a >. Cgr <. A , Q >. -> ( Q = a <-> A = Q ) ) ) |
27 |
22 23 24 25 23 26
|
syl122anc |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( <. Q , a >. Cgr <. A , Q >. -> ( Q = a <-> A = Q ) ) ) |
28 |
27
|
adantr |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> ( <. Q , a >. Cgr <. A , Q >. -> ( Q = a <-> A = Q ) ) ) |
29 |
21 28
|
mpd |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> ( Q = a <-> A = Q ) ) |
30 |
29
|
necon3bid |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> ( Q =/= a <-> A =/= Q ) ) |
31 |
20 30
|
mpbird |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> Q =/= a ) |
32 |
31
|
necomd |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> a =/= Q ) |
33 |
|
simpr2l |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> Q Btwn <. A , a >. ) |
34 |
22 23 25 24 33
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> Q Btwn <. a , A >. ) |
35 |
|
simpr3 |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> Q Btwn <. a , x >. ) |
36 |
|
simprr |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> x e. ( EE ` N ) ) |
37 |
|
btwnconn2 |
|- ( ( N e. NN /\ ( a e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( a =/= Q /\ Q Btwn <. a , A >. /\ Q Btwn <. a , x >. ) -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) ) |
38 |
22 24 23 25 36 37
|
syl122anc |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( a =/= Q /\ Q Btwn <. a , A >. /\ Q Btwn <. a , x >. ) -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) ) |
39 |
38
|
adantr |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> ( ( a =/= Q /\ Q Btwn <. a , A >. /\ Q Btwn <. a , x >. ) -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) ) |
40 |
32 34 35 39
|
mp3and |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) /\ Q Btwn <. a , x >. ) ) -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) |
41 |
19 40
|
sylan2br |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) /\ Q Btwn <. a , x >. ) ) -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) |
42 |
41
|
expr |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> ( Q Btwn <. a , x >. -> ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) ) |
43 |
42
|
anim1d |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( a e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> ( ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) |
44 |
18 43
|
sylanb |
|- ( ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> ( ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) |
45 |
44
|
an32s |
|- ( ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) /\ x e. ( EE ` N ) ) -> ( ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) |
46 |
45
|
reximdva |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> ( E. x e. ( EE ` N ) ( Q Btwn <. a , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) |
47 |
17 46
|
mpd |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ ( A =/= Q /\ ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) ) ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) |
48 |
47
|
expr |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ a e. ( EE ` N ) ) /\ A =/= Q ) -> ( ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) |
49 |
48
|
an32s |
|- ( ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A =/= Q ) /\ a e. ( EE ` N ) ) -> ( ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) |
50 |
49
|
rexlimdva |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A =/= Q ) -> ( E. a e. ( EE ` N ) ( Q Btwn <. A , a >. /\ <. Q , a >. Cgr <. A , Q >. ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) ) |
51 |
10 50
|
mpd |
|- ( ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ A =/= Q ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) |
52 |
|
simp2l |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) |
53 |
|
simp3 |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
54 |
|
axsegcon |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( Q Btwn <. Q , x >. /\ <. Q , x >. Cgr <. B , C >. ) ) |
55 |
5 52 52 53 54
|
syl121anc |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( Q Btwn <. Q , x >. /\ <. Q , x >. Cgr <. B , C >. ) ) |
56 |
|
orc |
|- ( Q Btwn <. Q , x >. -> ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) ) |
57 |
56
|
anim1i |
|- ( ( Q Btwn <. Q , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> ( ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) |
58 |
57
|
reximi |
|- ( E. x e. ( EE ` N ) ( Q Btwn <. Q , x >. /\ <. Q , x >. Cgr <. B , C >. ) -> E. x e. ( EE ` N ) ( ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) |
59 |
55 58
|
syl |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( ( Q Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) |
60 |
4 51 59
|
pm2.61ne |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( ( A Btwn <. Q , x >. \/ x Btwn <. Q , A >. ) /\ <. Q , x >. Cgr <. B , C >. ) ) |