Metamath Proof Explorer


Theorem segcon2

Description: Generalization of axsegcon . This time, we generate an endpoint for a segment on the ray Q A congruent to B C and starting at Q , as opposed to axsegcon , where the segment starts at A (Contributed by Scott Fenton, 14-Oct-2013) Remove unneeded inequality. (Revised by Scott Fenton, 15-Oct-2013)

Ref Expression
Assertion segcon2 ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝐴 = 𝑄 → ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ↔ 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ) )
2 1 orbi1d ( 𝐴 = 𝑄 → ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ↔ ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ) )
3 2 anbi1d ( 𝐴 = 𝑄 → ( ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ↔ ( ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
4 3 rexbidv ( 𝐴 = 𝑄 → ( ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ↔ ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
5 simp1 ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ )
6 simp2 ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) )
7 6 ancomd ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) )
8 axsegcon ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) )
9 5 7 7 8 syl3anc ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) )
10 9 adantr ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝐴𝑄 ) → ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) )
11 simpl1 ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ )
12 simpr ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) )
13 simpl2l ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) )
14 simpl3 ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) )
15 axsegcon ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
16 11 12 13 14 15 syl121anc ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
17 16 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
18 anass ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) )
19 df-3an ( ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ↔ ( ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) )
20 simpr1 ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → 𝐴𝑄 )
21 simpr2r ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ )
22 simpl1 ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ )
23 simpl2l ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) )
24 simprl ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) )
25 simpl2r ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
26 cgrdegen ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ → ( 𝑄 = 𝑎𝐴 = 𝑄 ) ) )
27 22 23 24 25 23 26 syl122anc ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ → ( 𝑄 = 𝑎𝐴 = 𝑄 ) ) )
28 27 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → ( ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ → ( 𝑄 = 𝑎𝐴 = 𝑄 ) ) )
29 21 28 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → ( 𝑄 = 𝑎𝐴 = 𝑄 ) )
30 29 necon3bid ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → ( 𝑄𝑎𝐴𝑄 ) )
31 20 30 mpbird ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → 𝑄𝑎 )
32 31 necomd ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → 𝑎𝑄 )
33 simpr2l ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ )
34 22 23 25 24 33 btwncomand ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → 𝑄 Btwn ⟨ 𝑎 , 𝐴 ⟩ )
35 simpr3 ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ )
36 simprr ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) )
37 btwnconn2 ( ( 𝑁 ∈ ℕ ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑎𝑄𝑄 Btwn ⟨ 𝑎 , 𝐴 ⟩ ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) → ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ) )
38 22 24 23 25 36 37 syl122anc ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑎𝑄𝑄 Btwn ⟨ 𝑎 , 𝐴 ⟩ ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) → ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ) )
39 38 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → ( ( 𝑎𝑄𝑄 Btwn ⟨ 𝑎 , 𝐴 ⟩ ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) → ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ) )
40 32 34 35 39 mp3and ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) )
41 19 40 sylan2br ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ) ∧ 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ) ) → ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) )
42 41 expr ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ) ) → ( 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ → ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ) )
43 42 anim1d ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ) ) → ( ( 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) → ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
44 18 43 sylanb ( ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ) ) → ( ( 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) → ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
45 44 an32s ( ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) → ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
46 45 reximdva ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ) ) → ( ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝑎 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
47 17 46 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴𝑄 ∧ ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
48 47 expr ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝐴𝑄 ) → ( ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
49 48 an32s ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝐴𝑄 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
50 49 rexlimdva ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝐴𝑄 ) → ( ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝐴 , 𝑎 ⟩ ∧ ⟨ 𝑄 , 𝑎 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) ) )
51 10 50 mpd ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝐴𝑄 ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
52 simp2l ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) )
53 simp3 ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) )
54 axsegcon ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
55 5 52 52 53 54 syl121anc ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
56 orc ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ → ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) )
57 56 anim1i ( ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) → ( ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
58 57 reximi ( ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
59 55 58 syl ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝑄 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )
60 4 51 59 pm2.61ne ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝐴 Btwn ⟨ 𝑄 , 𝑥 ⟩ ∨ 𝑥 Btwn ⟨ 𝑄 , 𝐴 ⟩ ) ∧ ⟨ 𝑄 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐶 ⟩ ) )