Metamath Proof Explorer


Theorem segcon2

Description: Generalization of axsegcon . This time, we generate an endpoint for a segment on the ray Q A congruent to B C and starting at Q , as opposed to axsegcon , where the segment starts at A (Contributed by Scott Fenton, 14-Oct-2013) Remove unneeded inequality. (Revised by Scott Fenton, 15-Oct-2013)

Ref Expression
Assertion segcon2 N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N A Btwn Q x x Btwn Q A Q x Cgr B C

Proof

Step Hyp Ref Expression
1 breq1 A = Q A Btwn Q x Q Btwn Q x
2 1 orbi1d A = Q A Btwn Q x x Btwn Q A Q Btwn Q x x Btwn Q A
3 2 anbi1d A = Q A Btwn Q x x Btwn Q A Q x Cgr B C Q Btwn Q x x Btwn Q A Q x Cgr B C
4 3 rexbidv A = Q x 𝔼 N A Btwn Q x x Btwn Q A Q x Cgr B C x 𝔼 N Q Btwn Q x x Btwn Q A Q x Cgr B C
5 simp1 N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N N
6 simp2 N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N Q 𝔼 N A 𝔼 N
7 6 ancomd N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N Q 𝔼 N
8 axsegcon N A 𝔼 N Q 𝔼 N A 𝔼 N Q 𝔼 N a 𝔼 N Q Btwn A a Q a Cgr A Q
9 5 7 7 8 syl3anc N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N Q Btwn A a Q a Cgr A Q
10 9 adantr N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N A Q a 𝔼 N Q Btwn A a Q a Cgr A Q
11 simpl1 N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N N
12 simpr N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N a 𝔼 N
13 simpl2l N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N Q 𝔼 N
14 simpl3 N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N B 𝔼 N C 𝔼 N
15 axsegcon N a 𝔼 N Q 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N Q Btwn a x Q x Cgr B C
16 11 12 13 14 15 syl121anc N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N Q Btwn a x Q x Cgr B C
17 16 adantr N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N A Q Q Btwn A a Q a Cgr A Q x 𝔼 N Q Btwn a x Q x Cgr B C
18 anass N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N
19 df-3an A Q Q Btwn A a Q a Cgr A Q Q Btwn a x A Q Q Btwn A a Q a Cgr A Q Q Btwn a x
20 simpr1 N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x A Q
21 simpr2r N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x Q a Cgr A Q
22 simpl1 N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N N
23 simpl2l N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N Q 𝔼 N
24 simprl N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N a 𝔼 N
25 simpl2r N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A 𝔼 N
26 cgrdegen N Q 𝔼 N a 𝔼 N A 𝔼 N Q 𝔼 N Q a Cgr A Q Q = a A = Q
27 22 23 24 25 23 26 syl122anc N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N Q a Cgr A Q Q = a A = Q
28 27 adantr N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x Q a Cgr A Q Q = a A = Q
29 21 28 mpd N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x Q = a A = Q
30 29 necon3bid N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x Q a A Q
31 20 30 mpbird N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x Q a
32 31 necomd N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x a Q
33 simpr2l N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x Q Btwn A a
34 22 23 25 24 33 btwncomand N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x Q Btwn a A
35 simpr3 N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x Q Btwn a x
36 simprr N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N x 𝔼 N
37 btwnconn2 N a 𝔼 N Q 𝔼 N A 𝔼 N x 𝔼 N a Q Q Btwn a A Q Btwn a x A Btwn Q x x Btwn Q A
38 22 24 23 25 36 37 syl122anc N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N a Q Q Btwn a A Q Btwn a x A Btwn Q x x Btwn Q A
39 38 adantr N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x a Q Q Btwn a A Q Btwn a x A Btwn Q x x Btwn Q A
40 32 34 35 39 mp3and N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x A Btwn Q x x Btwn Q A
41 19 40 sylan2br N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x A Btwn Q x x Btwn Q A
42 41 expr N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x A Btwn Q x x Btwn Q A
43 42 anim1d N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x Q x Cgr B C A Btwn Q x x Btwn Q A Q x Cgr B C
44 18 43 sylanb N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N x 𝔼 N A Q Q Btwn A a Q a Cgr A Q Q Btwn a x Q x Cgr B C A Btwn Q x x Btwn Q A Q x Cgr B C
45 44 an32s N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N A Q Q Btwn A a Q a Cgr A Q x 𝔼 N Q Btwn a x Q x Cgr B C A Btwn Q x x Btwn Q A Q x Cgr B C
46 45 reximdva N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N A Q Q Btwn A a Q a Cgr A Q x 𝔼 N Q Btwn a x Q x Cgr B C x 𝔼 N A Btwn Q x x Btwn Q A Q x Cgr B C
47 17 46 mpd N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N A Q Q Btwn A a Q a Cgr A Q x 𝔼 N A Btwn Q x x Btwn Q A Q x Cgr B C
48 47 expr N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N a 𝔼 N A Q Q Btwn A a Q a Cgr A Q x 𝔼 N A Btwn Q x x Btwn Q A Q x Cgr B C
49 48 an32s N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N A Q a 𝔼 N Q Btwn A a Q a Cgr A Q x 𝔼 N A Btwn Q x x Btwn Q A Q x Cgr B C
50 49 rexlimdva N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N A Q a 𝔼 N Q Btwn A a Q a Cgr A Q x 𝔼 N A Btwn Q x x Btwn Q A Q x Cgr B C
51 10 50 mpd N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N A Q x 𝔼 N A Btwn Q x x Btwn Q A Q x Cgr B C
52 simp2l N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N Q 𝔼 N
53 simp3 N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N C 𝔼 N
54 axsegcon N Q 𝔼 N Q 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N Q Btwn Q x Q x Cgr B C
55 5 52 52 53 54 syl121anc N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N Q Btwn Q x Q x Cgr B C
56 orc Q Btwn Q x Q Btwn Q x x Btwn Q A
57 56 anim1i Q Btwn Q x Q x Cgr B C Q Btwn Q x x Btwn Q A Q x Cgr B C
58 57 reximi x 𝔼 N Q Btwn Q x Q x Cgr B C x 𝔼 N Q Btwn Q x x Btwn Q A Q x Cgr B C
59 55 58 syl N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N Q Btwn Q x x Btwn Q A Q x Cgr B C
60 4 51 59 pm2.61ne N Q 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N A Btwn Q x x Btwn Q A Q x Cgr B C