| Step | Hyp | Ref | Expression | 
						
							| 1 |  | btwnconn1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) -> ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) ) ) | 
						
							| 2 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> B Btwn <. A , C >. ) | 
						
							| 3 | 2 | anim1i |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ C Btwn <. A , D >. ) -> ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) ) | 
						
							| 4 |  | btwnexch3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> C Btwn <. B , D >. ) ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ C Btwn <. A , D >. ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> C Btwn <. B , D >. ) ) | 
						
							| 6 | 3 5 | mpd |  |-  ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ C Btwn <. A , D >. ) -> C Btwn <. B , D >. ) | 
						
							| 7 | 6 | ex |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> ( C Btwn <. A , D >. -> C Btwn <. B , D >. ) ) | 
						
							| 8 |  | simpr3 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> B Btwn <. A , D >. ) | 
						
							| 9 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 10 |  | simp3l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 11 | 9 10 | jca |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( D e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 12 |  | btwnexch3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ D Btwn <. A , C >. ) -> D Btwn <. B , C >. ) ) | 
						
							| 13 | 11 12 | syld3an3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ D Btwn <. A , C >. ) -> D Btwn <. B , C >. ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> ( ( B Btwn <. A , D >. /\ D Btwn <. A , C >. ) -> D Btwn <. B , C >. ) ) | 
						
							| 15 | 8 14 | mpand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> ( D Btwn <. A , C >. -> D Btwn <. B , C >. ) ) | 
						
							| 16 | 7 15 | orim12d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) -> ( ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) -> ( C Btwn <. B , D >. \/ D Btwn <. B , C >. ) ) ) | 
						
							| 17 | 16 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) -> ( ( C Btwn <. A , D >. \/ D Btwn <. A , C >. ) -> ( C Btwn <. B , D >. \/ D Btwn <. B , C >. ) ) ) ) | 
						
							| 18 | 1 17 | mpdd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( A =/= B /\ B Btwn <. A , C >. /\ B Btwn <. A , D >. ) -> ( C Btwn <. B , D >. \/ D Btwn <. B , C >. ) ) ) |