| Step | Hyp | Ref | Expression | 
						
							| 1 |  | endofsegidand.1 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | endofsegidand.2 |  |-  ( ph -> A e. ( EE ` N ) ) | 
						
							| 3 |  | endofsegidand.3 |  |-  ( ph -> B e. ( EE ` N ) ) | 
						
							| 4 |  | endofsegidand.4 |  |-  ( ph -> C e. ( EE ` N ) ) | 
						
							| 5 |  | endofsegidand.5 |  |-  ( ( ph /\ ps ) -> C Btwn <. A , B >. ) | 
						
							| 6 |  | endofsegidand.6 |  |-  ( ( ph /\ ps ) -> <. A , B >. Cgr <. A , C >. ) | 
						
							| 7 |  | endofsegid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. A , C >. ) -> B = C ) ) | 
						
							| 8 | 1 2 4 3 7 | syl13anc |  |-  ( ph -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. A , C >. ) -> B = C ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ ps ) -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. A , C >. ) -> B = C ) ) | 
						
							| 10 | 5 6 9 | mp2and |  |-  ( ( ph /\ ps ) -> B = C ) |