Step |
Hyp |
Ref |
Expression |
1 |
|
endofsegidand.1 |
|- ( ph -> N e. NN ) |
2 |
|
endofsegidand.2 |
|- ( ph -> A e. ( EE ` N ) ) |
3 |
|
endofsegidand.3 |
|- ( ph -> B e. ( EE ` N ) ) |
4 |
|
endofsegidand.4 |
|- ( ph -> C e. ( EE ` N ) ) |
5 |
|
endofsegidand.5 |
|- ( ( ph /\ ps ) -> C Btwn <. A , B >. ) |
6 |
|
endofsegidand.6 |
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. A , C >. ) |
7 |
|
endofsegid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. A , C >. ) -> B = C ) ) |
8 |
1 2 4 3 7
|
syl13anc |
|- ( ph -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. A , C >. ) -> B = C ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ ps ) -> ( ( C Btwn <. A , B >. /\ <. A , B >. Cgr <. A , C >. ) -> B = C ) ) |
10 |
5 6 9
|
mp2and |
|- ( ( ph /\ ps ) -> B = C ) |