| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) |
| 2 |
|
simpr1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 3 |
|
simpr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 4 |
|
simpr2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 5 |
|
cgrcom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. <-> <. A , B >. Cgr <. A , C >. ) ) |
| 6 |
1 2 3 2 4 5
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. <-> <. A , B >. Cgr <. A , C >. ) ) |
| 7 |
6
|
biimpd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. A , B >. Cgr <. A , C >. ) ) |
| 8 |
|
idd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. A , C >. Cgr <. A , B >. ) ) |
| 9 |
|
axcgrrflx |
|- ( ( N e. NN /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> <. B , C >. Cgr <. C , B >. ) |
| 10 |
9
|
3adant3r1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. B , C >. Cgr <. C , B >. ) |
| 11 |
10
|
a1d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. B , C >. Cgr <. C , B >. ) ) |
| 12 |
7 8 11
|
3jcad |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) |
| 13 |
|
3ancomb |
|- ( ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
| 14 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. <-> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) |
| 15 |
13 14
|
syl3an3br |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. <-> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) |
| 16 |
15
|
3anidm23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. <-> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) |
| 17 |
12 16
|
sylibrd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) ) |
| 18 |
|
btwnxfr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) -> C Btwn <. A , B >. ) ) |
| 19 |
13 18
|
syl3an3br |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) -> C Btwn <. A , B >. ) ) |
| 20 |
19
|
3anidm23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) -> C Btwn <. A , B >. ) ) |
| 21 |
17 20
|
sylan2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> C Btwn <. A , B >. ) ) |
| 22 |
|
simpl |
|- ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> B Btwn <. A , C >. ) |
| 23 |
22
|
a1i |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> B Btwn <. A , C >. ) ) |
| 24 |
21 23
|
jcad |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> ( C Btwn <. A , B >. /\ B Btwn <. A , C >. ) ) ) |
| 25 |
|
3anrot |
|- ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
| 26 |
|
btwnswapid2 |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ B Btwn <. A , C >. ) -> C = B ) ) |
| 27 |
25 26
|
sylan2br |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ B Btwn <. A , C >. ) -> C = B ) ) |
| 28 |
24 27
|
syld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> C = B ) ) |