| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 2 |  | simpr1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 3 |  | simpr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 4 |  | simpr2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 5 |  | cgrcom |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. <-> <. A , B >. Cgr <. A , C >. ) ) | 
						
							| 6 | 1 2 3 2 4 5 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. <-> <. A , B >. Cgr <. A , C >. ) ) | 
						
							| 7 | 6 | biimpd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. A , B >. Cgr <. A , C >. ) ) | 
						
							| 8 |  | idd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. A , C >. Cgr <. A , B >. ) ) | 
						
							| 9 |  | axcgrrflx |  |-  ( ( N e. NN /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> <. B , C >. Cgr <. C , B >. ) | 
						
							| 10 | 9 | 3adant3r1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. B , C >. Cgr <. C , B >. ) | 
						
							| 11 | 10 | a1d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. B , C >. Cgr <. C , B >. ) ) | 
						
							| 12 | 7 8 11 | 3jcad |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) | 
						
							| 13 |  | 3ancomb |  |-  ( ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 14 |  | brcgr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. <-> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) | 
						
							| 15 | 13 14 | syl3an3br |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. <-> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) | 
						
							| 16 | 15 | 3anidm23 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. <-> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) | 
						
							| 17 | 12 16 | sylibrd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) ) | 
						
							| 18 |  | btwnxfr |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) -> C Btwn <. A , B >. ) ) | 
						
							| 19 | 13 18 | syl3an3br |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) -> C Btwn <. A , B >. ) ) | 
						
							| 20 | 19 | 3anidm23 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) -> C Btwn <. A , B >. ) ) | 
						
							| 21 | 17 20 | sylan2d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> C Btwn <. A , B >. ) ) | 
						
							| 22 |  | simpl |  |-  ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> B Btwn <. A , C >. ) | 
						
							| 23 | 22 | a1i |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> B Btwn <. A , C >. ) ) | 
						
							| 24 | 21 23 | jcad |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> ( C Btwn <. A , B >. /\ B Btwn <. A , C >. ) ) ) | 
						
							| 25 |  | 3anrot |  |-  ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) | 
						
							| 26 |  | btwnswapid2 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ B Btwn <. A , C >. ) -> C = B ) ) | 
						
							| 27 | 25 26 | sylan2br |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ B Btwn <. A , C >. ) -> C = B ) ) | 
						
							| 28 | 24 27 | syld |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> C = B ) ) |