Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) |
2 |
|
simpr1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
3 |
|
simpr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
4 |
|
simpr2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
5 |
|
cgrcom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. <-> <. A , B >. Cgr <. A , C >. ) ) |
6 |
1 2 3 2 4 5
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. <-> <. A , B >. Cgr <. A , C >. ) ) |
7 |
6
|
biimpd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. A , B >. Cgr <. A , C >. ) ) |
8 |
|
idd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. A , C >. Cgr <. A , B >. ) ) |
9 |
|
axcgrrflx |
|- ( ( N e. NN /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> <. B , C >. Cgr <. C , B >. ) |
10 |
9
|
3adant3r1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. B , C >. Cgr <. C , B >. ) |
11 |
10
|
a1d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. B , C >. Cgr <. C , B >. ) ) |
12 |
7 8 11
|
3jcad |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) |
13 |
|
3ancomb |
|- ( ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
14 |
|
brcgr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. <-> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) |
15 |
13 14
|
syl3an3br |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. <-> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) |
16 |
15
|
3anidm23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. <-> ( <. A , B >. Cgr <. A , C >. /\ <. A , C >. Cgr <. A , B >. /\ <. B , C >. Cgr <. C , B >. ) ) ) |
17 |
12 16
|
sylibrd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , C >. Cgr <. A , B >. -> <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) ) |
18 |
|
btwnxfr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) -> C Btwn <. A , B >. ) ) |
19 |
13 18
|
syl3an3br |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) -> C Btwn <. A , B >. ) ) |
20 |
19
|
3anidm23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. C , B >. >. ) -> C Btwn <. A , B >. ) ) |
21 |
17 20
|
sylan2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> C Btwn <. A , B >. ) ) |
22 |
|
simpl |
|- ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> B Btwn <. A , C >. ) |
23 |
22
|
a1i |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> B Btwn <. A , C >. ) ) |
24 |
21 23
|
jcad |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> ( C Btwn <. A , B >. /\ B Btwn <. A , C >. ) ) ) |
25 |
|
3anrot |
|- ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) |
26 |
|
btwnswapid2 |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ B Btwn <. A , C >. ) -> C = B ) ) |
27 |
25 26
|
sylan2br |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ B Btwn <. A , C >. ) -> C = B ) ) |
28 |
24 27
|
syld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ <. A , C >. Cgr <. A , B >. ) -> C = B ) ) |