Metamath Proof Explorer


Theorem endofsegid

Description: If A , B , and C fall in order on a line, and A B and A C are congruent, then C = B . (Contributed by Scott Fenton, 7-Oct-2013)

Ref Expression
Assertion endofsegid NA𝔼NB𝔼NC𝔼NBBtwnACACCgrABC=B

Proof

Step Hyp Ref Expression
1 simpl NA𝔼NB𝔼NC𝔼NN
2 simpr1 NA𝔼NB𝔼NC𝔼NA𝔼N
3 simpr3 NA𝔼NB𝔼NC𝔼NC𝔼N
4 simpr2 NA𝔼NB𝔼NC𝔼NB𝔼N
5 cgrcom NA𝔼NC𝔼NA𝔼NB𝔼NACCgrABABCgrAC
6 1 2 3 2 4 5 syl122anc NA𝔼NB𝔼NC𝔼NACCgrABABCgrAC
7 6 biimpd NA𝔼NB𝔼NC𝔼NACCgrABABCgrAC
8 idd NA𝔼NB𝔼NC𝔼NACCgrABACCgrAB
9 axcgrrflx NB𝔼NC𝔼NBCCgrCB
10 9 3adant3r1 NA𝔼NB𝔼NC𝔼NBCCgrCB
11 10 a1d NA𝔼NB𝔼NC𝔼NACCgrABBCCgrCB
12 7 8 11 3jcad NA𝔼NB𝔼NC𝔼NACCgrABABCgrACACCgrABBCCgrCB
13 3ancomb A𝔼NC𝔼NB𝔼NA𝔼NB𝔼NC𝔼N
14 brcgr3 NA𝔼NB𝔼NC𝔼NA𝔼NC𝔼NB𝔼NABCCgr3ACBABCgrACACCgrABBCCgrCB
15 13 14 syl3an3br NA𝔼NB𝔼NC𝔼NA𝔼NB𝔼NC𝔼NABCCgr3ACBABCgrACACCgrABBCCgrCB
16 15 3anidm23 NA𝔼NB𝔼NC𝔼NABCCgr3ACBABCgrACACCgrABBCCgrCB
17 12 16 sylibrd NA𝔼NB𝔼NC𝔼NACCgrABABCCgr3ACB
18 btwnxfr NA𝔼NB𝔼NC𝔼NA𝔼NC𝔼NB𝔼NBBtwnACABCCgr3ACBCBtwnAB
19 13 18 syl3an3br NA𝔼NB𝔼NC𝔼NA𝔼NB𝔼NC𝔼NBBtwnACABCCgr3ACBCBtwnAB
20 19 3anidm23 NA𝔼NB𝔼NC𝔼NBBtwnACABCCgr3ACBCBtwnAB
21 17 20 sylan2d NA𝔼NB𝔼NC𝔼NBBtwnACACCgrABCBtwnAB
22 simpl BBtwnACACCgrABBBtwnAC
23 22 a1i NA𝔼NB𝔼NC𝔼NBBtwnACACCgrABBBtwnAC
24 21 23 jcad NA𝔼NB𝔼NC𝔼NBBtwnACACCgrABCBtwnABBBtwnAC
25 3anrot C𝔼NA𝔼NB𝔼NA𝔼NB𝔼NC𝔼N
26 btwnswapid2 NC𝔼NA𝔼NB𝔼NCBtwnABBBtwnACC=B
27 25 26 sylan2br NA𝔼NB𝔼NC𝔼NCBtwnABBBtwnACC=B
28 24 27 syld NA𝔼NB𝔼NC𝔼NBBtwnACACCgrABC=B