Metamath Proof Explorer


Theorem endofsegidand

Description: Deduction form of endofsegid . (Contributed by Scott Fenton, 15-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses endofsegidand.1 φN
endofsegidand.2 φA𝔼N
endofsegidand.3 φB𝔼N
endofsegidand.4 φC𝔼N
endofsegidand.5 φψCBtwnAB
endofsegidand.6 φψABCgrAC
Assertion endofsegidand φψB=C

Proof

Step Hyp Ref Expression
1 endofsegidand.1 φN
2 endofsegidand.2 φA𝔼N
3 endofsegidand.3 φB𝔼N
4 endofsegidand.4 φC𝔼N
5 endofsegidand.5 φψCBtwnAB
6 endofsegidand.6 φψABCgrAC
7 endofsegid NA𝔼NC𝔼NB𝔼NCBtwnABABCgrACB=C
8 1 2 4 3 7 syl13anc φCBtwnABABCgrACB=C
9 8 adantr φψCBtwnABABCgrACB=C
10 5 6 9 mp2and φψB=C