| Step |
Hyp |
Ref |
Expression |
| 1 |
|
endofsegidand.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
endofsegidand.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 3 |
|
endofsegidand.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 4 |
|
endofsegidand.4 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 5 |
|
endofsegidand.5 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ) |
| 6 |
|
endofsegidand.6 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐴 , 𝐶 〉 ) |
| 7 |
|
endofsegid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐴 , 𝐶 〉 ) → 𝐵 = 𝐶 ) ) |
| 8 |
1 2 4 3 7
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐴 , 𝐶 〉 ) → 𝐵 = 𝐶 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ∧ 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐴 , 𝐶 〉 ) → 𝐵 = 𝐶 ) ) |
| 10 |
5 6 9
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 = 𝐶 ) |