| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp11 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 2 |  | simp2l1 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 3 |  | simp2l3 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> c e. ( EE ` N ) ) | 
						
							| 4 |  | simp31 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) | 
						
							| 5 |  | simp32 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) | 
						
							| 6 |  | simp1l3 |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> C =/= c ) | 
						
							| 7 | 6 | ad2antrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> C =/= c ) | 
						
							| 8 |  | simpr1l |  |-  ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> C Btwn <. c , P >. ) | 
						
							| 9 | 8 | ad2antll |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> C Btwn <. c , P >. ) | 
						
							| 10 |  | btwncolinear5 |  |-  ( ( N e. NN /\ ( c e. ( EE ` N ) /\ P e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. c , P >. -> C Colinear <. c , P >. ) ) | 
						
							| 11 | 1 3 4 2 10 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( C Btwn <. c , P >. -> C Colinear <. c , P >. ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( C Btwn <. c , P >. -> C Colinear <. c , P >. ) ) | 
						
							| 13 | 9 12 | mpd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> C Colinear <. c , P >. ) | 
						
							| 14 |  | simp2l2 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 15 |  | simp2r1 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> d e. ( EE ` N ) ) | 
						
							| 16 |  | simpr1r |  |-  ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> <. C , P >. Cgr <. C , d >. ) | 
						
							| 17 | 16 | ad2antll |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. C , P >. Cgr <. C , d >. ) | 
						
							| 18 |  | simp2rr |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> <. C , d >. Cgr <. C , D >. ) | 
						
							| 19 | 18 | ad2antrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. C , d >. Cgr <. C , D >. ) | 
						
							| 20 | 1 2 4 2 15 2 14 17 19 | cgrtrand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. C , P >. Cgr <. C , D >. ) | 
						
							| 21 |  | btwnconn1lem11 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. D , C >. Cgr <. Q , C >. ) | 
						
							| 22 | 1 14 2 5 2 21 | cgrcomlrand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. C , D >. Cgr <. C , Q >. ) | 
						
							| 23 | 1 2 4 2 14 2 5 20 22 | cgrtrand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. C , P >. Cgr <. C , Q >. ) | 
						
							| 24 |  | simp12 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 25 |  | simp13 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 26 |  | simp2r2 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> b e. ( EE ` N ) ) | 
						
							| 27 |  | simp1rr |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> B Btwn <. A , D >. ) | 
						
							| 28 | 27 | ad2antrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> B Btwn <. A , D >. ) | 
						
							| 29 |  | simp2ll |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> D Btwn <. A , c >. ) | 
						
							| 30 | 29 | ad2antrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> D Btwn <. A , c >. ) | 
						
							| 31 | 1 24 25 14 3 28 30 | btwnexchand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> B Btwn <. A , c >. ) | 
						
							| 32 |  | simp3ll |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> c Btwn <. A , b >. ) | 
						
							| 33 | 32 | ad2antrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> c Btwn <. A , b >. ) | 
						
							| 34 | 1 24 25 3 26 31 33 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> c Btwn <. B , b >. ) | 
						
							| 35 |  | opeq1 |  |-  ( B = b -> <. B , b >. = <. b , b >. ) | 
						
							| 36 | 35 | breq2d |  |-  ( B = b -> ( c Btwn <. B , b >. <-> c Btwn <. b , b >. ) ) | 
						
							| 37 | 36 | biimpac |  |-  ( ( c Btwn <. B , b >. /\ B = b ) -> c Btwn <. b , b >. ) | 
						
							| 38 |  | axbtwnid |  |-  ( ( N e. NN /\ c e. ( EE ` N ) /\ b e. ( EE ` N ) ) -> ( c Btwn <. b , b >. -> c = b ) ) | 
						
							| 39 | 1 3 26 38 | syl3anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( c Btwn <. b , b >. -> c = b ) ) | 
						
							| 40 | 37 39 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( c Btwn <. B , b >. /\ B = b ) -> c = b ) ) | 
						
							| 41 | 40 | expd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( c Btwn <. B , b >. -> ( B = b -> c = b ) ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( c Btwn <. B , b >. -> ( B = b -> c = b ) ) ) | 
						
							| 43 | 34 42 | mpd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( B = b -> c = b ) ) | 
						
							| 44 |  | simp1 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 45 |  | simp2l |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) | 
						
							| 46 |  | simp2r |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) | 
						
							| 47 | 44 45 46 | 3jca |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) ) | 
						
							| 48 |  | simpl |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) | 
						
							| 49 |  | simprl |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) | 
						
							| 50 | 48 49 | jca |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) | 
						
							| 51 |  | btwnconn1lem7 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> C =/= d ) | 
						
							| 52 | 47 50 51 | syl2an |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> C =/= d ) | 
						
							| 53 |  | simp2rl |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> C Btwn <. A , d >. ) | 
						
							| 54 | 53 | ad2antrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> C Btwn <. A , d >. ) | 
						
							| 55 |  | simp3rl |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> d Btwn <. A , b >. ) | 
						
							| 56 | 55 | ad2antrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> d Btwn <. A , b >. ) | 
						
							| 57 | 1 24 2 15 26 54 56 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> d Btwn <. C , b >. ) | 
						
							| 58 |  | btwncolinear2 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ b e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( d Btwn <. C , b >. -> C Colinear <. d , b >. ) ) | 
						
							| 59 | 1 2 26 15 58 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( d Btwn <. C , b >. -> C Colinear <. d , b >. ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( d Btwn <. C , b >. -> C Colinear <. d , b >. ) ) | 
						
							| 61 | 57 60 | mpd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> C Colinear <. d , b >. ) | 
						
							| 62 |  | simp33 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> R e. ( EE ` N ) ) | 
						
							| 63 |  | simpr2r |  |-  ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> <. C , R >. Cgr <. C , E >. ) | 
						
							| 64 | 63 | ad2antll |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. C , R >. Cgr <. C , E >. ) | 
						
							| 65 |  | btwnconn1lem5 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> <. E , C >. Cgr <. E , c >. ) | 
						
							| 66 | 47 50 65 | syl2an |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. E , C >. Cgr <. E , c >. ) | 
						
							| 67 |  | opeq2 |  |-  ( R = C -> <. C , R >. = <. C , C >. ) | 
						
							| 68 | 67 | breq1d |  |-  ( R = C -> ( <. C , R >. Cgr <. C , E >. <-> <. C , C >. Cgr <. C , E >. ) ) | 
						
							| 69 | 68 | anbi1d |  |-  ( R = C -> ( ( <. C , R >. Cgr <. C , E >. /\ <. E , C >. Cgr <. E , c >. ) <-> ( <. C , C >. Cgr <. C , E >. /\ <. E , C >. Cgr <. E , c >. ) ) ) | 
						
							| 70 | 69 | biimpac |  |-  ( ( ( <. C , R >. Cgr <. C , E >. /\ <. E , C >. Cgr <. E , c >. ) /\ R = C ) -> ( <. C , C >. Cgr <. C , E >. /\ <. E , C >. Cgr <. E , c >. ) ) | 
						
							| 71 |  | simp2r3 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) | 
						
							| 72 |  | cgrid2 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ C e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , E >. -> C = E ) ) | 
						
							| 73 | 1 2 2 71 72 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , E >. -> C = E ) ) | 
						
							| 74 |  | opeq1 |  |-  ( C = E -> <. C , C >. = <. E , C >. ) | 
						
							| 75 |  | opeq1 |  |-  ( C = E -> <. C , c >. = <. E , c >. ) | 
						
							| 76 | 74 75 | breq12d |  |-  ( C = E -> ( <. C , C >. Cgr <. C , c >. <-> <. E , C >. Cgr <. E , c >. ) ) | 
						
							| 77 | 76 | biimpar |  |-  ( ( C = E /\ <. E , C >. Cgr <. E , c >. ) -> <. C , C >. Cgr <. C , c >. ) | 
						
							| 78 |  | cgrid2 |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ C e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , c >. -> C = c ) ) | 
						
							| 79 | 1 2 2 3 78 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , c >. -> C = c ) ) | 
						
							| 80 | 77 79 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( C = E /\ <. E , C >. Cgr <. E , c >. ) -> C = c ) ) | 
						
							| 81 | 73 80 | syland |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( <. C , C >. Cgr <. C , E >. /\ <. E , C >. Cgr <. E , c >. ) -> C = c ) ) | 
						
							| 82 | 70 81 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. C , R >. Cgr <. C , E >. /\ <. E , C >. Cgr <. E , c >. ) /\ R = C ) -> C = c ) ) | 
						
							| 83 | 82 | expd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( <. C , R >. Cgr <. C , E >. /\ <. E , C >. Cgr <. E , c >. ) -> ( R = C -> C = c ) ) ) | 
						
							| 84 | 83 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( ( <. C , R >. Cgr <. C , E >. /\ <. E , C >. Cgr <. E , c >. ) -> ( R = C -> C = c ) ) ) | 
						
							| 85 | 64 66 84 | mp2and |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( R = C -> C = c ) ) | 
						
							| 86 | 85 | necon3d |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( C =/= c -> R =/= C ) ) | 
						
							| 87 | 7 86 | mpd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> R =/= C ) | 
						
							| 88 |  | simpr2l |  |-  ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> C Btwn <. d , R >. ) | 
						
							| 89 | 88 | ad2antll |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> C Btwn <. d , R >. ) | 
						
							| 90 |  | btwncolinear4 |  |-  ( ( N e. NN /\ ( d e. ( EE ` N ) /\ R e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. d , R >. -> R Colinear <. C , d >. ) ) | 
						
							| 91 | 1 15 62 2 90 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( C Btwn <. d , R >. -> R Colinear <. C , d >. ) ) | 
						
							| 92 | 91 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( C Btwn <. d , R >. -> R Colinear <. C , d >. ) ) | 
						
							| 93 | 89 92 | mpd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> R Colinear <. C , d >. ) | 
						
							| 94 |  | simpr3r |  |-  ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> <. R , Q >. Cgr <. R , P >. ) | 
						
							| 95 | 94 | ad2antll |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. R , Q >. Cgr <. R , P >. ) | 
						
							| 96 | 1 62 5 62 4 95 | cgrcomand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. R , P >. Cgr <. R , Q >. ) | 
						
							| 97 | 1 62 2 15 4 5 87 93 96 23 | linecgrand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , P >. Cgr <. d , Q >. ) | 
						
							| 98 | 1 2 15 26 4 5 52 61 23 97 | linecgrand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. b , P >. Cgr <. b , Q >. ) | 
						
							| 99 |  | opeq1 |  |-  ( c = b -> <. c , P >. = <. b , P >. ) | 
						
							| 100 |  | opeq1 |  |-  ( c = b -> <. c , Q >. = <. b , Q >. ) | 
						
							| 101 | 99 100 | breq12d |  |-  ( c = b -> ( <. c , P >. Cgr <. c , Q >. <-> <. b , P >. Cgr <. b , Q >. ) ) | 
						
							| 102 | 101 | biimprd |  |-  ( c = b -> ( <. b , P >. Cgr <. b , Q >. -> <. c , P >. Cgr <. c , Q >. ) ) | 
						
							| 103 | 43 98 102 | syl6ci |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( B = b -> <. c , P >. Cgr <. c , Q >. ) ) | 
						
							| 104 | 103 | com12 |  |-  ( B = b -> ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. c , P >. Cgr <. c , Q >. ) ) | 
						
							| 105 |  | simprl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( B =/= b /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) ) -> B =/= b ) | 
						
							| 106 | 34 | adantrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( B =/= b /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) ) -> c Btwn <. B , b >. ) | 
						
							| 107 |  | btwncolinear1 |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ b e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) -> ( c Btwn <. B , b >. -> B Colinear <. b , c >. ) ) | 
						
							| 108 | 1 25 26 3 107 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( c Btwn <. B , b >. -> B Colinear <. b , c >. ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( B =/= b /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) ) -> ( c Btwn <. B , b >. -> B Colinear <. b , c >. ) ) | 
						
							| 110 | 106 109 | mpd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( B =/= b /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) ) -> B Colinear <. b , c >. ) | 
						
							| 111 |  | simp1rl |  |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> B Btwn <. A , C >. ) | 
						
							| 112 | 111 | ad2antrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> B Btwn <. A , C >. ) | 
						
							| 113 | 1 24 25 2 15 112 54 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> C Btwn <. B , d >. ) | 
						
							| 114 |  | btwncolinear6 |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ d e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. B , d >. -> C Colinear <. d , B >. ) ) | 
						
							| 115 | 1 25 15 2 114 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( C Btwn <. B , d >. -> C Colinear <. d , B >. ) ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( C Btwn <. B , d >. -> C Colinear <. d , B >. ) ) | 
						
							| 117 | 113 116 | mpd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> C Colinear <. d , B >. ) | 
						
							| 118 | 1 2 15 25 4 5 52 117 23 97 | linecgrand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. B , P >. Cgr <. B , Q >. ) | 
						
							| 119 | 118 | adantrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( B =/= b /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) ) -> <. B , P >. Cgr <. B , Q >. ) | 
						
							| 120 | 98 | adantrl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( B =/= b /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) ) -> <. b , P >. Cgr <. b , Q >. ) | 
						
							| 121 | 1 25 26 3 4 5 105 110 119 120 | linecgrand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( B =/= b /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) ) -> <. c , P >. Cgr <. c , Q >. ) | 
						
							| 122 | 121 | an12s |  |-  ( ( B =/= b /\ ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) ) -> <. c , P >. Cgr <. c , Q >. ) | 
						
							| 123 | 122 | ex |  |-  ( B =/= b -> ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. c , P >. Cgr <. c , Q >. ) ) | 
						
							| 124 | 104 123 | pm2.61ine |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. c , P >. Cgr <. c , Q >. ) | 
						
							| 125 | 1 2 3 4 4 5 7 13 23 124 | linecgrand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. P , P >. Cgr <. P , Q >. ) | 
						
							| 126 |  | cgrid2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( <. P , P >. Cgr <. P , Q >. -> P = Q ) ) | 
						
							| 127 | 1 4 4 5 126 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , P >. Cgr <. P , Q >. -> P = Q ) ) | 
						
							| 128 | 127 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. P , P >. Cgr <. P , Q >. -> P = Q ) ) | 
						
							| 129 | 125 128 | mpd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> P = Q ) | 
						
							| 130 |  | btwnconn1lem10 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , D >. Cgr <. P , Q >. ) | 
						
							| 131 |  | opeq1 |  |-  ( P = Q -> <. P , Q >. = <. Q , Q >. ) | 
						
							| 132 | 131 | breq2d |  |-  ( P = Q -> ( <. d , D >. Cgr <. P , Q >. <-> <. d , D >. Cgr <. Q , Q >. ) ) | 
						
							| 133 | 132 | biimpa |  |-  ( ( P = Q /\ <. d , D >. Cgr <. P , Q >. ) -> <. d , D >. Cgr <. Q , Q >. ) | 
						
							| 134 |  | axcgrid |  |-  ( ( N e. NN /\ ( d e. ( EE ` N ) /\ D e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( <. d , D >. Cgr <. Q , Q >. -> d = D ) ) | 
						
							| 135 | 1 15 14 5 134 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. d , D >. Cgr <. Q , Q >. -> d = D ) ) | 
						
							| 136 | 133 135 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( P = Q /\ <. d , D >. Cgr <. P , Q >. ) -> d = D ) ) | 
						
							| 137 | 136 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( ( P = Q /\ <. d , D >. Cgr <. P , Q >. ) -> d = D ) ) | 
						
							| 138 | 129 130 137 | mp2and |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> d = D ) | 
						
							| 139 | 138 | eqcomd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> D = d ) |