| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp11 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | simp2l1 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 3 |  | simp2l3 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 4 |  | simp31 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 |  | simp32 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 6 |  | simp1l3 | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐶  ≠  𝑐 ) | 
						
							| 7 | 6 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐶  ≠  𝑐 ) | 
						
							| 8 |  | simpr1l | ⊢ ( ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) )  →  𝐶  Btwn  〈 𝑐 ,  𝑃 〉 ) | 
						
							| 9 | 8 | ad2antll | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐶  Btwn  〈 𝑐 ,  𝑃 〉 ) | 
						
							| 10 |  | btwncolinear5 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  →  𝐶  Colinear  〈 𝑐 ,  𝑃 〉 ) ) | 
						
							| 11 | 1 3 4 2 10 | syl13anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  →  𝐶  Colinear  〈 𝑐 ,  𝑃 〉 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  →  𝐶  Colinear  〈 𝑐 ,  𝑃 〉 ) ) | 
						
							| 13 | 9 12 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐶  Colinear  〈 𝑐 ,  𝑃 〉 ) | 
						
							| 14 |  | simp2l2 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 15 |  | simp2r1 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 16 |  | simpr1r | ⊢ ( ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) )  →  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 ) | 
						
							| 17 | 16 | ad2antll | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 ) | 
						
							| 18 |  | simp2rr | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 19 | 18 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 20 | 1 2 4 2 15 2 14 17 19 | cgrtrand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 21 |  | btwnconn1lem11 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝐷 ,  𝐶 〉 Cgr 〈 𝑄 ,  𝐶 〉 ) | 
						
							| 22 | 1 14 2 5 2 21 | cgrcomlrand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝐶 ,  𝐷 〉 Cgr 〈 𝐶 ,  𝑄 〉 ) | 
						
							| 23 | 1 2 4 2 14 2 5 20 22 | cgrtrand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑄 〉 ) | 
						
							| 24 |  | simp12 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 25 |  | simp13 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 26 |  | simp2r2 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 27 |  | simp1rr | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) | 
						
							| 28 | 27 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) | 
						
							| 29 |  | simp2ll | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐷  Btwn  〈 𝐴 ,  𝑐 〉 ) | 
						
							| 30 | 29 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐷  Btwn  〈 𝐴 ,  𝑐 〉 ) | 
						
							| 31 | 1 24 25 14 3 28 30 | btwnexchand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐵  Btwn  〈 𝐴 ,  𝑐 〉 ) | 
						
							| 32 |  | simp3ll | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝑐  Btwn  〈 𝐴 ,  𝑏 〉 ) | 
						
							| 33 | 32 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝑐  Btwn  〈 𝐴 ,  𝑏 〉 ) | 
						
							| 34 | 1 24 25 3 26 31 33 | btwnexch3and | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝑐  Btwn  〈 𝐵 ,  𝑏 〉 ) | 
						
							| 35 |  | opeq1 | ⊢ ( 𝐵  =  𝑏  →  〈 𝐵 ,  𝑏 〉  =  〈 𝑏 ,  𝑏 〉 ) | 
						
							| 36 | 35 | breq2d | ⊢ ( 𝐵  =  𝑏  →  ( 𝑐  Btwn  〈 𝐵 ,  𝑏 〉  ↔  𝑐  Btwn  〈 𝑏 ,  𝑏 〉 ) ) | 
						
							| 37 | 36 | biimpac | ⊢ ( ( 𝑐  Btwn  〈 𝐵 ,  𝑏 〉  ∧  𝐵  =  𝑏 )  →  𝑐  Btwn  〈 𝑏 ,  𝑏 〉 ) | 
						
							| 38 |  | axbtwnid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝑐  Btwn  〈 𝑏 ,  𝑏 〉  →  𝑐  =  𝑏 ) ) | 
						
							| 39 | 1 3 26 38 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑐  Btwn  〈 𝑏 ,  𝑏 〉  →  𝑐  =  𝑏 ) ) | 
						
							| 40 | 37 39 | syl5 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝑐  Btwn  〈 𝐵 ,  𝑏 〉  ∧  𝐵  =  𝑏 )  →  𝑐  =  𝑏 ) ) | 
						
							| 41 | 40 | expd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑐  Btwn  〈 𝐵 ,  𝑏 〉  →  ( 𝐵  =  𝑏  →  𝑐  =  𝑏 ) ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( 𝑐  Btwn  〈 𝐵 ,  𝑏 〉  →  ( 𝐵  =  𝑏  →  𝑐  =  𝑏 ) ) ) | 
						
							| 43 | 34 42 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( 𝐵  =  𝑏  →  𝑐  =  𝑏 ) ) | 
						
							| 44 |  | simp1 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 45 |  | simp2l | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 46 |  | simp2r | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 47 | 44 45 46 | 3jca | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) ) ) | 
						
							| 48 |  | simpl | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) )  →  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) ) | 
						
							| 49 |  | simprl | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) )  →  ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 ) ) | 
						
							| 50 | 48 49 | jca | ⊢ ( ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) )  →  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 ) ) ) | 
						
							| 51 |  | btwnconn1lem7 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 ) ) )  →  𝐶  ≠  𝑑 ) | 
						
							| 52 | 47 50 51 | syl2an | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐶  ≠  𝑑 ) | 
						
							| 53 |  | simp2rl | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 ) | 
						
							| 54 | 53 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 ) | 
						
							| 55 |  | simp3rl | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝑑  Btwn  〈 𝐴 ,  𝑏 〉 ) | 
						
							| 56 | 55 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝑑  Btwn  〈 𝐴 ,  𝑏 〉 ) | 
						
							| 57 | 1 24 2 15 26 54 56 | btwnexch3and | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝑑  Btwn  〈 𝐶 ,  𝑏 〉 ) | 
						
							| 58 |  | btwncolinear2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑑  Btwn  〈 𝐶 ,  𝑏 〉  →  𝐶  Colinear  〈 𝑑 ,  𝑏 〉 ) ) | 
						
							| 59 | 1 2 26 15 58 | syl13anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑑  Btwn  〈 𝐶 ,  𝑏 〉  →  𝐶  Colinear  〈 𝑑 ,  𝑏 〉 ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( 𝑑  Btwn  〈 𝐶 ,  𝑏 〉  →  𝐶  Colinear  〈 𝑑 ,  𝑏 〉 ) ) | 
						
							| 61 | 57 60 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐶  Colinear  〈 𝑑 ,  𝑏 〉 ) | 
						
							| 62 |  | simp33 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 63 |  | simpr2r | ⊢ ( ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) )  →  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 ) | 
						
							| 64 | 63 | ad2antll | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 ) | 
						
							| 65 |  | btwnconn1lem5 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 ) ) )  →  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 ) | 
						
							| 66 | 47 50 65 | syl2an | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 ) | 
						
							| 67 |  | opeq2 | ⊢ ( 𝑅  =  𝐶  →  〈 𝐶 ,  𝑅 〉  =  〈 𝐶 ,  𝐶 〉 ) | 
						
							| 68 | 67 | breq1d | ⊢ ( 𝑅  =  𝐶  →  ( 〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉  ↔  〈 𝐶 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝐸 〉 ) ) | 
						
							| 69 | 68 | anbi1d | ⊢ ( 𝑅  =  𝐶  →  ( ( 〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉  ∧  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 )  ↔  ( 〈 𝐶 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝐸 〉  ∧  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 ) ) ) | 
						
							| 70 | 69 | biimpac | ⊢ ( ( ( 〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉  ∧  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 )  ∧  𝑅  =  𝐶 )  →  ( 〈 𝐶 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝐸 〉  ∧  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 ) ) | 
						
							| 71 |  | simp2r3 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 72 |  | cgrid2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝐶 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝐸 〉  →  𝐶  =  𝐸 ) ) | 
						
							| 73 | 1 2 2 71 72 | syl13anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝐶 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝐸 〉  →  𝐶  =  𝐸 ) ) | 
						
							| 74 |  | opeq1 | ⊢ ( 𝐶  =  𝐸  →  〈 𝐶 ,  𝐶 〉  =  〈 𝐸 ,  𝐶 〉 ) | 
						
							| 75 |  | opeq1 | ⊢ ( 𝐶  =  𝐸  →  〈 𝐶 ,  𝑐 〉  =  〈 𝐸 ,  𝑐 〉 ) | 
						
							| 76 | 74 75 | breq12d | ⊢ ( 𝐶  =  𝐸  →  ( 〈 𝐶 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝑐 〉  ↔  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 ) ) | 
						
							| 77 | 76 | biimpar | ⊢ ( ( 𝐶  =  𝐸  ∧  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 )  →  〈 𝐶 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝑐 〉 ) | 
						
							| 78 |  | cgrid2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝐶 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝑐 〉  →  𝐶  =  𝑐 ) ) | 
						
							| 79 | 1 2 2 3 78 | syl13anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝐶 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝑐 〉  →  𝐶  =  𝑐 ) ) | 
						
							| 80 | 77 79 | syl5 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐶  =  𝐸  ∧  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 )  →  𝐶  =  𝑐 ) ) | 
						
							| 81 | 73 80 | syland | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 〈 𝐶 ,  𝐶 〉 Cgr 〈 𝐶 ,  𝐸 〉  ∧  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 )  →  𝐶  =  𝑐 ) ) | 
						
							| 82 | 70 81 | syl5 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( ( 〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉  ∧  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 )  ∧  𝑅  =  𝐶 )  →  𝐶  =  𝑐 ) ) | 
						
							| 83 | 82 | expd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉  ∧  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 )  →  ( 𝑅  =  𝐶  →  𝐶  =  𝑐 ) ) ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( ( 〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉  ∧  〈 𝐸 ,  𝐶 〉 Cgr 〈 𝐸 ,  𝑐 〉 )  →  ( 𝑅  =  𝐶  →  𝐶  =  𝑐 ) ) ) | 
						
							| 85 | 64 66 84 | mp2and | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( 𝑅  =  𝐶  →  𝐶  =  𝑐 ) ) | 
						
							| 86 | 85 | necon3d | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( 𝐶  ≠  𝑐  →  𝑅  ≠  𝐶 ) ) | 
						
							| 87 | 7 86 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝑅  ≠  𝐶 ) | 
						
							| 88 |  | simpr2l | ⊢ ( ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) )  →  𝐶  Btwn  〈 𝑑 ,  𝑅 〉 ) | 
						
							| 89 | 88 | ad2antll | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐶  Btwn  〈 𝑑 ,  𝑅 〉 ) | 
						
							| 90 |  | btwncolinear4 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  →  𝑅  Colinear  〈 𝐶 ,  𝑑 〉 ) ) | 
						
							| 91 | 1 15 62 2 90 | syl13anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  →  𝑅  Colinear  〈 𝐶 ,  𝑑 〉 ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  →  𝑅  Colinear  〈 𝐶 ,  𝑑 〉 ) ) | 
						
							| 93 | 89 92 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝑅  Colinear  〈 𝐶 ,  𝑑 〉 ) | 
						
							| 94 |  | simpr3r | ⊢ ( ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) )  →  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) | 
						
							| 95 | 94 | ad2antll | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) | 
						
							| 96 | 1 62 5 62 4 95 | cgrcomand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝑅 ,  𝑃 〉 Cgr 〈 𝑅 ,  𝑄 〉 ) | 
						
							| 97 | 1 62 2 15 4 5 87 93 96 23 | linecgrand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝑑 ,  𝑃 〉 Cgr 〈 𝑑 ,  𝑄 〉 ) | 
						
							| 98 | 1 2 15 26 4 5 52 61 23 97 | linecgrand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝑏 ,  𝑃 〉 Cgr 〈 𝑏 ,  𝑄 〉 ) | 
						
							| 99 |  | opeq1 | ⊢ ( 𝑐  =  𝑏  →  〈 𝑐 ,  𝑃 〉  =  〈 𝑏 ,  𝑃 〉 ) | 
						
							| 100 |  | opeq1 | ⊢ ( 𝑐  =  𝑏  →  〈 𝑐 ,  𝑄 〉  =  〈 𝑏 ,  𝑄 〉 ) | 
						
							| 101 | 99 100 | breq12d | ⊢ ( 𝑐  =  𝑏  →  ( 〈 𝑐 ,  𝑃 〉 Cgr 〈 𝑐 ,  𝑄 〉  ↔  〈 𝑏 ,  𝑃 〉 Cgr 〈 𝑏 ,  𝑄 〉 ) ) | 
						
							| 102 | 101 | biimprd | ⊢ ( 𝑐  =  𝑏  →  ( 〈 𝑏 ,  𝑃 〉 Cgr 〈 𝑏 ,  𝑄 〉  →  〈 𝑐 ,  𝑃 〉 Cgr 〈 𝑐 ,  𝑄 〉 ) ) | 
						
							| 103 | 43 98 102 | syl6ci | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( 𝐵  =  𝑏  →  〈 𝑐 ,  𝑃 〉 Cgr 〈 𝑐 ,  𝑄 〉 ) ) | 
						
							| 104 | 103 | com12 | ⊢ ( 𝐵  =  𝑏  →  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝑐 ,  𝑃 〉 Cgr 〈 𝑐 ,  𝑄 〉 ) ) | 
						
							| 105 |  | simprl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝐵  ≠  𝑏  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) ) )  →  𝐵  ≠  𝑏 ) | 
						
							| 106 | 34 | adantrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝐵  ≠  𝑏  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) ) )  →  𝑐  Btwn  〈 𝐵 ,  𝑏 〉 ) | 
						
							| 107 |  | btwncolinear1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑐  Btwn  〈 𝐵 ,  𝑏 〉  →  𝐵  Colinear  〈 𝑏 ,  𝑐 〉 ) ) | 
						
							| 108 | 1 25 26 3 107 | syl13anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑐  Btwn  〈 𝐵 ,  𝑏 〉  →  𝐵  Colinear  〈 𝑏 ,  𝑐 〉 ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝐵  ≠  𝑏  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) ) )  →  ( 𝑐  Btwn  〈 𝐵 ,  𝑏 〉  →  𝐵  Colinear  〈 𝑏 ,  𝑐 〉 ) ) | 
						
							| 110 | 106 109 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝐵  ≠  𝑏  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) ) )  →  𝐵  Colinear  〈 𝑏 ,  𝑐 〉 ) | 
						
							| 111 |  | simp1rl | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐵  Btwn  〈 𝐴 ,  𝐶 〉 ) | 
						
							| 112 | 111 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐵  Btwn  〈 𝐴 ,  𝐶 〉 ) | 
						
							| 113 | 1 24 25 2 15 112 54 | btwnexch3and | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐶  Btwn  〈 𝐵 ,  𝑑 〉 ) | 
						
							| 114 |  | btwncolinear6 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  Btwn  〈 𝐵 ,  𝑑 〉  →  𝐶  Colinear  〈 𝑑 ,  𝐵 〉 ) ) | 
						
							| 115 | 1 25 15 2 114 | syl13anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  Btwn  〈 𝐵 ,  𝑑 〉  →  𝐶  Colinear  〈 𝑑 ,  𝐵 〉 ) ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( 𝐶  Btwn  〈 𝐵 ,  𝑑 〉  →  𝐶  Colinear  〈 𝑑 ,  𝐵 〉 ) ) | 
						
							| 117 | 113 116 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐶  Colinear  〈 𝑑 ,  𝐵 〉 ) | 
						
							| 118 | 1 2 15 25 4 5 52 117 23 97 | linecgrand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝐵 ,  𝑃 〉 Cgr 〈 𝐵 ,  𝑄 〉 ) | 
						
							| 119 | 118 | adantrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝐵  ≠  𝑏  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) ) )  →  〈 𝐵 ,  𝑃 〉 Cgr 〈 𝐵 ,  𝑄 〉 ) | 
						
							| 120 | 98 | adantrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝐵  ≠  𝑏  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) ) )  →  〈 𝑏 ,  𝑃 〉 Cgr 〈 𝑏 ,  𝑄 〉 ) | 
						
							| 121 | 1 25 26 3 4 5 105 110 119 120 | linecgrand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝐵  ≠  𝑏  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) ) )  →  〈 𝑐 ,  𝑃 〉 Cgr 〈 𝑐 ,  𝑄 〉 ) | 
						
							| 122 | 121 | an12s | ⊢ ( ( 𝐵  ≠  𝑏  ∧  ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) ) )  →  〈 𝑐 ,  𝑃 〉 Cgr 〈 𝑐 ,  𝑄 〉 ) | 
						
							| 123 | 122 | ex | ⊢ ( 𝐵  ≠  𝑏  →  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝑐 ,  𝑃 〉 Cgr 〈 𝑐 ,  𝑄 〉 ) ) | 
						
							| 124 | 104 123 | pm2.61ine | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝑐 ,  𝑃 〉 Cgr 〈 𝑐 ,  𝑄 〉 ) | 
						
							| 125 | 1 2 3 4 4 5 7 13 23 124 | linecgrand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝑃 ,  𝑃 〉 Cgr 〈 𝑃 ,  𝑄 〉 ) | 
						
							| 126 |  | cgrid2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝑃 ,  𝑃 〉 Cgr 〈 𝑃 ,  𝑄 〉  →  𝑃  =  𝑄 ) ) | 
						
							| 127 | 1 4 4 5 126 | syl13anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝑃 ,  𝑃 〉 Cgr 〈 𝑃 ,  𝑄 〉  →  𝑃  =  𝑄 ) ) | 
						
							| 128 | 127 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( 〈 𝑃 ,  𝑃 〉 Cgr 〈 𝑃 ,  𝑄 〉  →  𝑃  =  𝑄 ) ) | 
						
							| 129 | 125 128 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝑃  =  𝑄 ) | 
						
							| 130 |  | btwnconn1lem10 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  〈 𝑑 ,  𝐷 〉 Cgr 〈 𝑃 ,  𝑄 〉 ) | 
						
							| 131 |  | opeq1 | ⊢ ( 𝑃  =  𝑄  →  〈 𝑃 ,  𝑄 〉  =  〈 𝑄 ,  𝑄 〉 ) | 
						
							| 132 | 131 | breq2d | ⊢ ( 𝑃  =  𝑄  →  ( 〈 𝑑 ,  𝐷 〉 Cgr 〈 𝑃 ,  𝑄 〉  ↔  〈 𝑑 ,  𝐷 〉 Cgr 〈 𝑄 ,  𝑄 〉 ) ) | 
						
							| 133 | 132 | biimpa | ⊢ ( ( 𝑃  =  𝑄  ∧  〈 𝑑 ,  𝐷 〉 Cgr 〈 𝑃 ,  𝑄 〉 )  →  〈 𝑑 ,  𝐷 〉 Cgr 〈 𝑄 ,  𝑄 〉 ) | 
						
							| 134 |  | axcgrid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝑑 ,  𝐷 〉 Cgr 〈 𝑄 ,  𝑄 〉  →  𝑑  =  𝐷 ) ) | 
						
							| 135 | 1 15 14 5 134 | syl13anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝑑 ,  𝐷 〉 Cgr 〈 𝑄 ,  𝑄 〉  →  𝑑  =  𝐷 ) ) | 
						
							| 136 | 133 135 | syl5 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝑃  =  𝑄  ∧  〈 𝑑 ,  𝐷 〉 Cgr 〈 𝑃 ,  𝑄 〉 )  →  𝑑  =  𝐷 ) ) | 
						
							| 137 | 136 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  ( ( 𝑃  =  𝑄  ∧  〈 𝑑 ,  𝐷 〉 Cgr 〈 𝑃 ,  𝑄 〉 )  →  𝑑  =  𝐷 ) ) | 
						
							| 138 | 129 130 137 | mp2and | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝑑  =  𝐷 ) | 
						
							| 139 | 138 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐸  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝑐 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  ∧  ( ( 𝐸  Btwn  〈 𝐶 ,  𝑐 〉  ∧  𝐸  Btwn  〈 𝐷 ,  𝑑 〉 )  ∧  ( ( 𝐶  Btwn  〈 𝑐 ,  𝑃 〉  ∧  〈 𝐶 ,  𝑃 〉 Cgr 〈 𝐶 ,  𝑑 〉 )  ∧  ( 𝐶  Btwn  〈 𝑑 ,  𝑅 〉  ∧  〈 𝐶 ,  𝑅 〉 Cgr 〈 𝐶 ,  𝐸 〉 )  ∧  ( 𝑅  Btwn  〈 𝑃 ,  𝑄 〉  ∧  〈 𝑅 ,  𝑄 〉 Cgr 〈 𝑅 ,  𝑃 〉 ) ) ) ) )  →  𝐷  =  𝑑 ) |