Metamath Proof Explorer


Theorem btwnconn1lem12

Description: Lemma for btwnconn1 . Using a long string of invocations of linecgr , we show that D = d . (Contributed by Scott Fenton, 9-Oct-2013)

Ref Expression
Assertion btwnconn1lem12 ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐷 = 𝑑 )

Proof

Step Hyp Ref Expression
1 simp11 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ )
2 simp2l1 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
3 simp2l3 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) )
4 simp31 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) )
5 simp32 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) )
6 simp1l3 ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) → 𝐶𝑐 )
7 6 ad2antrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐶𝑐 )
8 simpr1l ( ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) → 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ )
9 8 ad2antll ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ )
10 btwncolinear5 ( ( 𝑁 ∈ ℕ ∧ ( 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ → 𝐶 Colinear ⟨ 𝑐 , 𝑃 ⟩ ) )
11 1 3 4 2 10 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ → 𝐶 Colinear ⟨ 𝑐 , 𝑃 ⟩ ) )
12 11 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ → 𝐶 Colinear ⟨ 𝑐 , 𝑃 ⟩ ) )
13 9 12 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐶 Colinear ⟨ 𝑐 , 𝑃 ⟩ )
14 simp2l2 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
15 simp2r1 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) )
16 simpr1r ( ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ )
17 16 ad2antll ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ )
18 simp2rr ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) → ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
19 18 ad2antrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
20 1 2 4 2 15 2 14 17 19 cgrtrand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
21 btwnconn1lem11 ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝑄 , 𝐶 ⟩ )
22 1 14 2 5 2 21 cgrcomlrand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ )
23 1 2 4 2 14 2 5 20 22 cgrtrand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ )
24 simp12 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
25 simp13 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
26 simp2r2 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) )
27 simp1rr ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) → 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ )
28 27 ad2antrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ )
29 simp2ll ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) → 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ )
30 29 ad2antrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ )
31 1 24 25 14 3 28 30 btwnexchand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐵 Btwn ⟨ 𝐴 , 𝑐 ⟩ )
32 simp3ll ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) → 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ )
33 32 ad2antrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ )
34 1 24 25 3 26 31 33 btwnexch3and ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝑐 Btwn ⟨ 𝐵 , 𝑏 ⟩ )
35 opeq1 ( 𝐵 = 𝑏 → ⟨ 𝐵 , 𝑏 ⟩ = ⟨ 𝑏 , 𝑏 ⟩ )
36 35 breq2d ( 𝐵 = 𝑏 → ( 𝑐 Btwn ⟨ 𝐵 , 𝑏 ⟩ ↔ 𝑐 Btwn ⟨ 𝑏 , 𝑏 ⟩ ) )
37 36 biimpac ( ( 𝑐 Btwn ⟨ 𝐵 , 𝑏 ⟩ ∧ 𝐵 = 𝑏 ) → 𝑐 Btwn ⟨ 𝑏 , 𝑏 ⟩ )
38 axbtwnid ( ( 𝑁 ∈ ℕ ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑐 Btwn ⟨ 𝑏 , 𝑏 ⟩ → 𝑐 = 𝑏 ) )
39 1 3 26 38 syl3anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑐 Btwn ⟨ 𝑏 , 𝑏 ⟩ → 𝑐 = 𝑏 ) )
40 37 39 syl5 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑐 Btwn ⟨ 𝐵 , 𝑏 ⟩ ∧ 𝐵 = 𝑏 ) → 𝑐 = 𝑏 ) )
41 40 expd ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑐 Btwn ⟨ 𝐵 , 𝑏 ⟩ → ( 𝐵 = 𝑏𝑐 = 𝑏 ) ) )
42 41 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( 𝑐 Btwn ⟨ 𝐵 , 𝑏 ⟩ → ( 𝐵 = 𝑏𝑐 = 𝑏 ) ) )
43 34 42 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( 𝐵 = 𝑏𝑐 = 𝑏 ) )
44 simp1 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) )
45 simp2l ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) )
46 simp2r ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) )
47 44 45 46 3jca ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) )
48 simpl ( ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) → ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) )
49 simprl ( ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) → ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) )
50 48 49 jca ( ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) → ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) )
51 btwnconn1lem7 ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → 𝐶𝑑 )
52 47 50 51 syl2an ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐶𝑑 )
53 simp2rl ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) → 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ )
54 53 ad2antrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ )
55 simp3rl ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) → 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ )
56 55 ad2antrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ )
57 1 24 2 15 26 54 56 btwnexch3and ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝑑 Btwn ⟨ 𝐶 , 𝑏 ⟩ )
58 btwncolinear2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑑 Btwn ⟨ 𝐶 , 𝑏 ⟩ → 𝐶 Colinear ⟨ 𝑑 , 𝑏 ⟩ ) )
59 1 2 26 15 58 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑑 Btwn ⟨ 𝐶 , 𝑏 ⟩ → 𝐶 Colinear ⟨ 𝑑 , 𝑏 ⟩ ) )
60 59 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( 𝑑 Btwn ⟨ 𝐶 , 𝑏 ⟩ → 𝐶 Colinear ⟨ 𝑑 , 𝑏 ⟩ ) )
61 57 60 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐶 Colinear ⟨ 𝑑 , 𝑏 ⟩ )
62 simp33 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) )
63 simpr2r ( ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) → ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ )
64 63 ad2antll ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ )
65 btwnconn1lem5 ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ )
66 47 50 65 syl2an ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ )
67 opeq2 ( 𝑅 = 𝐶 → ⟨ 𝐶 , 𝑅 ⟩ = ⟨ 𝐶 , 𝐶 ⟩ )
68 67 breq1d ( 𝑅 = 𝐶 → ( ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ↔ ⟨ 𝐶 , 𝐶 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) )
69 68 anbi1d ( 𝑅 = 𝐶 → ( ( ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ∧ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) ↔ ( ⟨ 𝐶 , 𝐶 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ∧ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) ) )
70 69 biimpac ( ( ( ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ∧ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) ∧ 𝑅 = 𝐶 ) → ( ⟨ 𝐶 , 𝐶 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ∧ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) )
71 simp2r3 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
72 cgrid2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐶 , 𝐶 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ → 𝐶 = 𝐸 ) )
73 1 2 2 71 72 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐶 , 𝐶 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ → 𝐶 = 𝐸 ) )
74 opeq1 ( 𝐶 = 𝐸 → ⟨ 𝐶 , 𝐶 ⟩ = ⟨ 𝐸 , 𝐶 ⟩ )
75 opeq1 ( 𝐶 = 𝐸 → ⟨ 𝐶 , 𝑐 ⟩ = ⟨ 𝐸 , 𝑐 ⟩ )
76 74 75 breq12d ( 𝐶 = 𝐸 → ( ⟨ 𝐶 , 𝐶 ⟩ Cgr ⟨ 𝐶 , 𝑐 ⟩ ↔ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) )
77 76 biimpar ( ( 𝐶 = 𝐸 ∧ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) → ⟨ 𝐶 , 𝐶 ⟩ Cgr ⟨ 𝐶 , 𝑐 ⟩ )
78 cgrid2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐶 , 𝐶 ⟩ Cgr ⟨ 𝐶 , 𝑐 ⟩ → 𝐶 = 𝑐 ) )
79 1 2 2 3 78 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐶 , 𝐶 ⟩ Cgr ⟨ 𝐶 , 𝑐 ⟩ → 𝐶 = 𝑐 ) )
80 77 79 syl5 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐶 = 𝐸 ∧ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) → 𝐶 = 𝑐 ) )
81 73 80 syland ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ⟨ 𝐶 , 𝐶 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ∧ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) → 𝐶 = 𝑐 ) )
82 70 81 syl5 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ∧ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) ∧ 𝑅 = 𝐶 ) → 𝐶 = 𝑐 ) )
83 82 expd ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ∧ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) → ( 𝑅 = 𝐶𝐶 = 𝑐 ) ) )
84 83 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( ( ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ∧ ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) → ( 𝑅 = 𝐶𝐶 = 𝑐 ) ) )
85 64 66 84 mp2and ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( 𝑅 = 𝐶𝐶 = 𝑐 ) )
86 85 necon3d ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( 𝐶𝑐𝑅𝐶 ) )
87 7 86 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝑅𝐶 )
88 simpr2l ( ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) → 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ )
89 88 ad2antll ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ )
90 btwncolinear4 ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ → 𝑅 Colinear ⟨ 𝐶 , 𝑑 ⟩ ) )
91 1 15 62 2 90 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ → 𝑅 Colinear ⟨ 𝐶 , 𝑑 ⟩ ) )
92 91 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ → 𝑅 Colinear ⟨ 𝐶 , 𝑑 ⟩ ) )
93 89 92 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝑅 Colinear ⟨ 𝐶 , 𝑑 ⟩ )
94 simpr3r ( ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) → ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ )
95 94 ad2antll ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ )
96 1 62 5 62 4 95 cgrcomand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝑅 , 𝑃 ⟩ Cgr ⟨ 𝑅 , 𝑄 ⟩ )
97 1 62 2 15 4 5 87 93 96 23 linecgrand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝑑 , 𝑃 ⟩ Cgr ⟨ 𝑑 , 𝑄 ⟩ )
98 1 2 15 26 4 5 52 61 23 97 linecgrand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝑏 , 𝑃 ⟩ Cgr ⟨ 𝑏 , 𝑄 ⟩ )
99 opeq1 ( 𝑐 = 𝑏 → ⟨ 𝑐 , 𝑃 ⟩ = ⟨ 𝑏 , 𝑃 ⟩ )
100 opeq1 ( 𝑐 = 𝑏 → ⟨ 𝑐 , 𝑄 ⟩ = ⟨ 𝑏 , 𝑄 ⟩ )
101 99 100 breq12d ( 𝑐 = 𝑏 → ( ⟨ 𝑐 , 𝑃 ⟩ Cgr ⟨ 𝑐 , 𝑄 ⟩ ↔ ⟨ 𝑏 , 𝑃 ⟩ Cgr ⟨ 𝑏 , 𝑄 ⟩ ) )
102 101 biimprd ( 𝑐 = 𝑏 → ( ⟨ 𝑏 , 𝑃 ⟩ Cgr ⟨ 𝑏 , 𝑄 ⟩ → ⟨ 𝑐 , 𝑃 ⟩ Cgr ⟨ 𝑐 , 𝑄 ⟩ ) )
103 43 98 102 syl6ci ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( 𝐵 = 𝑏 → ⟨ 𝑐 , 𝑃 ⟩ Cgr ⟨ 𝑐 , 𝑄 ⟩ ) )
104 103 com12 ( 𝐵 = 𝑏 → ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝑐 , 𝑃 ⟩ Cgr ⟨ 𝑐 , 𝑄 ⟩ ) )
105 simprl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵𝑏 ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) ) → 𝐵𝑏 )
106 34 adantrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵𝑏 ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) ) → 𝑐 Btwn ⟨ 𝐵 , 𝑏 ⟩ )
107 btwncolinear1 ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑐 Btwn ⟨ 𝐵 , 𝑏 ⟩ → 𝐵 Colinear ⟨ 𝑏 , 𝑐 ⟩ ) )
108 1 25 26 3 107 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑐 Btwn ⟨ 𝐵 , 𝑏 ⟩ → 𝐵 Colinear ⟨ 𝑏 , 𝑐 ⟩ ) )
109 108 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵𝑏 ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) ) → ( 𝑐 Btwn ⟨ 𝐵 , 𝑏 ⟩ → 𝐵 Colinear ⟨ 𝑏 , 𝑐 ⟩ ) )
110 106 109 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵𝑏 ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) ) → 𝐵 Colinear ⟨ 𝑏 , 𝑐 ⟩ )
111 simp1rl ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) → 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ )
112 111 ad2antrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ )
113 1 24 25 2 15 112 54 btwnexch3and ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐶 Btwn ⟨ 𝐵 , 𝑑 ⟩ )
114 btwncolinear6 ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn ⟨ 𝐵 , 𝑑 ⟩ → 𝐶 Colinear ⟨ 𝑑 , 𝐵 ⟩ ) )
115 1 25 15 2 114 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn ⟨ 𝐵 , 𝑑 ⟩ → 𝐶 Colinear ⟨ 𝑑 , 𝐵 ⟩ ) )
116 115 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( 𝐶 Btwn ⟨ 𝐵 , 𝑑 ⟩ → 𝐶 Colinear ⟨ 𝑑 , 𝐵 ⟩ ) )
117 113 116 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐶 Colinear ⟨ 𝑑 , 𝐵 ⟩ )
118 1 2 15 25 4 5 52 117 23 97 linecgrand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ )
119 118 adantrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵𝑏 ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) ) → ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ )
120 98 adantrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵𝑏 ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) ) → ⟨ 𝑏 , 𝑃 ⟩ Cgr ⟨ 𝑏 , 𝑄 ⟩ )
121 1 25 26 3 4 5 105 110 119 120 linecgrand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵𝑏 ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) ) → ⟨ 𝑐 , 𝑃 ⟩ Cgr ⟨ 𝑐 , 𝑄 ⟩ )
122 121 an12s ( ( 𝐵𝑏 ∧ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) ) → ⟨ 𝑐 , 𝑃 ⟩ Cgr ⟨ 𝑐 , 𝑄 ⟩ )
123 122 ex ( 𝐵𝑏 → ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝑐 , 𝑃 ⟩ Cgr ⟨ 𝑐 , 𝑄 ⟩ ) )
124 104 123 pm2.61ine ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝑐 , 𝑃 ⟩ Cgr ⟨ 𝑐 , 𝑄 ⟩ )
125 1 2 3 4 4 5 7 13 23 124 linecgrand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝑃 , 𝑃 ⟩ Cgr ⟨ 𝑃 , 𝑄 ⟩ )
126 cgrid2 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝑃 , 𝑃 ⟩ Cgr ⟨ 𝑃 , 𝑄 ⟩ → 𝑃 = 𝑄 ) )
127 1 4 4 5 126 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝑃 , 𝑃 ⟩ Cgr ⟨ 𝑃 , 𝑄 ⟩ → 𝑃 = 𝑄 ) )
128 127 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( ⟨ 𝑃 , 𝑃 ⟩ Cgr ⟨ 𝑃 , 𝑄 ⟩ → 𝑃 = 𝑄 ) )
129 125 128 mpd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝑃 = 𝑄 )
130 btwnconn1lem10 ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ⟨ 𝑑 , 𝐷 ⟩ Cgr ⟨ 𝑃 , 𝑄 ⟩ )
131 opeq1 ( 𝑃 = 𝑄 → ⟨ 𝑃 , 𝑄 ⟩ = ⟨ 𝑄 , 𝑄 ⟩ )
132 131 breq2d ( 𝑃 = 𝑄 → ( ⟨ 𝑑 , 𝐷 ⟩ Cgr ⟨ 𝑃 , 𝑄 ⟩ ↔ ⟨ 𝑑 , 𝐷 ⟩ Cgr ⟨ 𝑄 , 𝑄 ⟩ ) )
133 132 biimpa ( ( 𝑃 = 𝑄 ∧ ⟨ 𝑑 , 𝐷 ⟩ Cgr ⟨ 𝑃 , 𝑄 ⟩ ) → ⟨ 𝑑 , 𝐷 ⟩ Cgr ⟨ 𝑄 , 𝑄 ⟩ )
134 axcgrid ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝑑 , 𝐷 ⟩ Cgr ⟨ 𝑄 , 𝑄 ⟩ → 𝑑 = 𝐷 ) )
135 1 15 14 5 134 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝑑 , 𝐷 ⟩ Cgr ⟨ 𝑄 , 𝑄 ⟩ → 𝑑 = 𝐷 ) )
136 133 135 syl5 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑃 = 𝑄 ∧ ⟨ 𝑑 , 𝐷 ⟩ Cgr ⟨ 𝑃 , 𝑄 ⟩ ) → 𝑑 = 𝐷 ) )
137 136 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → ( ( 𝑃 = 𝑄 ∧ ⟨ 𝑑 , 𝐷 ⟩ Cgr ⟨ 𝑃 , 𝑄 ⟩ ) → 𝑑 = 𝐷 ) )
138 129 130 137 mp2and ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝑑 = 𝐷 )
139 138 eqcomd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ∧ ( ( 𝐶 Btwn ⟨ 𝑐 , 𝑃 ⟩ ∧ ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑑 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝑑 , 𝑅 ⟩ ∧ ⟨ 𝐶 , 𝑅 ⟩ Cgr ⟨ 𝐶 , 𝐸 ⟩ ) ∧ ( 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ∧ ⟨ 𝑅 , 𝑄 ⟩ Cgr ⟨ 𝑅 , 𝑃 ⟩ ) ) ) ) ) → 𝐷 = 𝑑 )