Metamath Proof Explorer


Theorem linecgrand

Description: Deduction form of linecgr . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses linecgrand.1 ( 𝜑𝑁 ∈ ℕ )
linecgrand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
linecgrand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
linecgrand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
linecgrand.5 ( 𝜑𝑃 ∈ ( 𝔼 ‘ 𝑁 ) )
linecgrand.6 ( 𝜑𝑄 ∈ ( 𝔼 ‘ 𝑁 ) )
linecgrand.7 ( ( 𝜑𝜓 ) → 𝐴𝐵 )
linecgrand.8 ( ( 𝜑𝜓 ) → 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ )
linecgrand.9 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ )
linecgrand.10 ( ( 𝜑𝜓 ) → ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ )
Assertion linecgrand ( ( 𝜑𝜓 ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ )

Proof

Step Hyp Ref Expression
1 linecgrand.1 ( 𝜑𝑁 ∈ ℕ )
2 linecgrand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 linecgrand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 linecgrand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
5 linecgrand.5 ( 𝜑𝑃 ∈ ( 𝔼 ‘ 𝑁 ) )
6 linecgrand.6 ( 𝜑𝑄 ∈ ( 𝔼 ‘ 𝑁 ) )
7 linecgrand.7 ( ( 𝜑𝜓 ) → 𝐴𝐵 )
8 linecgrand.8 ( ( 𝜑𝜓 ) → 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ )
9 linecgrand.9 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ )
10 linecgrand.10 ( ( 𝜑𝜓 ) → ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ )
11 7 8 jca ( ( 𝜑𝜓 ) → ( 𝐴𝐵𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) )
12 9 10 jca ( ( 𝜑𝜓 ) → ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) )
13 linecgr ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐴𝐵𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ ) )
14 1 2 3 4 5 6 13 syl132anc ( 𝜑 → ( ( ( 𝐴𝐵𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ ) )
15 14 adantr ( ( 𝜑𝜓 ) → ( ( ( 𝐴𝐵𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ ) )
16 11 12 15 mp2and ( ( 𝜑𝜓 ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ )