Step |
Hyp |
Ref |
Expression |
1 |
|
linecgrand.1 |
|- ( ph -> N e. NN ) |
2 |
|
linecgrand.2 |
|- ( ph -> A e. ( EE ` N ) ) |
3 |
|
linecgrand.3 |
|- ( ph -> B e. ( EE ` N ) ) |
4 |
|
linecgrand.4 |
|- ( ph -> C e. ( EE ` N ) ) |
5 |
|
linecgrand.5 |
|- ( ph -> P e. ( EE ` N ) ) |
6 |
|
linecgrand.6 |
|- ( ph -> Q e. ( EE ` N ) ) |
7 |
|
linecgrand.7 |
|- ( ( ph /\ ps ) -> A =/= B ) |
8 |
|
linecgrand.8 |
|- ( ( ph /\ ps ) -> A Colinear <. B , C >. ) |
9 |
|
linecgrand.9 |
|- ( ( ph /\ ps ) -> <. A , P >. Cgr <. A , Q >. ) |
10 |
|
linecgrand.10 |
|- ( ( ph /\ ps ) -> <. B , P >. Cgr <. B , Q >. ) |
11 |
7 8
|
jca |
|- ( ( ph /\ ps ) -> ( A =/= B /\ A Colinear <. B , C >. ) ) |
12 |
9 10
|
jca |
|- ( ( ph /\ ps ) -> ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) |
13 |
|
linecgr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) -> <. C , P >. Cgr <. C , Q >. ) ) |
14 |
1 2 3 4 5 6 13
|
syl132anc |
|- ( ph -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) -> <. C , P >. Cgr <. C , Q >. ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ ps ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) -> <. C , P >. Cgr <. C , Q >. ) ) |
16 |
11 12 15
|
mp2and |
|- ( ( ph /\ ps ) -> <. C , P >. Cgr <. C , Q >. ) |