| Step | Hyp | Ref | Expression | 
						
							| 1 |  | linecgrand.1 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | linecgrand.2 |  |-  ( ph -> A e. ( EE ` N ) ) | 
						
							| 3 |  | linecgrand.3 |  |-  ( ph -> B e. ( EE ` N ) ) | 
						
							| 4 |  | linecgrand.4 |  |-  ( ph -> C e. ( EE ` N ) ) | 
						
							| 5 |  | linecgrand.5 |  |-  ( ph -> P e. ( EE ` N ) ) | 
						
							| 6 |  | linecgrand.6 |  |-  ( ph -> Q e. ( EE ` N ) ) | 
						
							| 7 |  | linecgrand.7 |  |-  ( ( ph /\ ps ) -> A =/= B ) | 
						
							| 8 |  | linecgrand.8 |  |-  ( ( ph /\ ps ) -> A Colinear <. B , C >. ) | 
						
							| 9 |  | linecgrand.9 |  |-  ( ( ph /\ ps ) -> <. A , P >. Cgr <. A , Q >. ) | 
						
							| 10 |  | linecgrand.10 |  |-  ( ( ph /\ ps ) -> <. B , P >. Cgr <. B , Q >. ) | 
						
							| 11 | 7 8 | jca |  |-  ( ( ph /\ ps ) -> ( A =/= B /\ A Colinear <. B , C >. ) ) | 
						
							| 12 | 9 10 | jca |  |-  ( ( ph /\ ps ) -> ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) | 
						
							| 13 |  | linecgr |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) -> <. C , P >. Cgr <. C , Q >. ) ) | 
						
							| 14 | 1 2 3 4 5 6 13 | syl132anc |  |-  ( ph -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) -> <. C , P >. Cgr <. C , Q >. ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ ps ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) -> <. C , P >. Cgr <. C , Q >. ) ) | 
						
							| 16 | 11 12 15 | mp2and |  |-  ( ( ph /\ ps ) -> <. C , P >. Cgr <. C , Q >. ) |