Metamath Proof Explorer


Theorem linecgrand

Description: Deduction form of linecgr . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses linecgrand.1 φ N
linecgrand.2 φ A 𝔼 N
linecgrand.3 φ B 𝔼 N
linecgrand.4 φ C 𝔼 N
linecgrand.5 φ P 𝔼 N
linecgrand.6 φ Q 𝔼 N
linecgrand.7 φ ψ A B
linecgrand.8 φ ψ A Colinear B C
linecgrand.9 φ ψ A P Cgr A Q
linecgrand.10 φ ψ B P Cgr B Q
Assertion linecgrand φ ψ C P Cgr C Q

Proof

Step Hyp Ref Expression
1 linecgrand.1 φ N
2 linecgrand.2 φ A 𝔼 N
3 linecgrand.3 φ B 𝔼 N
4 linecgrand.4 φ C 𝔼 N
5 linecgrand.5 φ P 𝔼 N
6 linecgrand.6 φ Q 𝔼 N
7 linecgrand.7 φ ψ A B
8 linecgrand.8 φ ψ A Colinear B C
9 linecgrand.9 φ ψ A P Cgr A Q
10 linecgrand.10 φ ψ B P Cgr B Q
11 7 8 jca φ ψ A B A Colinear B C
12 9 10 jca φ ψ A P Cgr A Q B P Cgr B Q
13 linecgr N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B A Colinear B C A P Cgr A Q B P Cgr B Q C P Cgr C Q
14 1 2 3 4 5 6 13 syl132anc φ A B A Colinear B C A P Cgr A Q B P Cgr B Q C P Cgr C Q
15 14 adantr φ ψ A B A Colinear B C A P Cgr A Q B P Cgr B Q C P Cgr C Q
16 11 12 15 mp2and φ ψ C P Cgr C Q