Metamath Proof Explorer


Theorem linecgr

Description: Congruence rule for lines. Theorem 4.17 of Schwabhauser p. 37. (Contributed by Scott Fenton, 6-Oct-2013)

Ref Expression
Assertion linecgr N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B A Colinear B C A P Cgr A Q B P Cgr B Q C P Cgr C Q

Proof

Step Hyp Ref Expression
1 simprlr N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B A Colinear B C A P Cgr A Q B P Cgr B Q A Colinear B C
2 cgr3rflx N A 𝔼 N B 𝔼 N C 𝔼 N A B C Cgr3 A B C
3 2 3adant3 N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B C Cgr3 A B C
4 3 adantr N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B A Colinear B C A P Cgr A Q B P Cgr B Q A B C Cgr3 A B C
5 simprr N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B A Colinear B C A P Cgr A Q B P Cgr B Q A P Cgr A Q B P Cgr B Q
6 1 4 5 3jca N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B A Colinear B C A P Cgr A Q B P Cgr B Q A Colinear B C A B C Cgr3 A B C A P Cgr A Q B P Cgr B Q
7 simprll N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B A Colinear B C A P Cgr A Q B P Cgr B Q A B
8 6 7 jca N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B A Colinear B C A P Cgr A Q B P Cgr B Q A Colinear B C A B C Cgr3 A B C A P Cgr A Q B P Cgr B Q A B
9 8 ex N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B A Colinear B C A P Cgr A Q B P Cgr B Q A Colinear B C A B C Cgr3 A B C A P Cgr A Q B P Cgr B Q A B
10 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N N
11 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A 𝔼 N
12 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N B 𝔼 N
13 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N C 𝔼 N
14 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N P 𝔼 N
15 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N Q 𝔼 N
16 brfs N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N Q 𝔼 N A B C P FiveSeg A B C Q A Colinear B C A B C Cgr3 A B C A P Cgr A Q B P Cgr B Q
17 16 anbi1d N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N Q 𝔼 N A B C P FiveSeg A B C Q A B A Colinear B C A B C Cgr3 A B C A P Cgr A Q B P Cgr B Q A B
18 fscgr N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N Q 𝔼 N A B C P FiveSeg A B C Q A B C P Cgr C Q
19 17 18 sylbird N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N Q 𝔼 N A Colinear B C A B C Cgr3 A B C A P Cgr A Q B P Cgr B Q A B C P Cgr C Q
20 10 11 12 13 14 11 12 13 15 19 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A Colinear B C A B C Cgr3 A B C A P Cgr A Q B P Cgr B Q A B C P Cgr C Q
21 9 20 syld N A 𝔼 N B 𝔼 N C 𝔼 N P 𝔼 N Q 𝔼 N A B A Colinear B C A P Cgr A Q B P Cgr B Q C P Cgr C Q