Step |
Hyp |
Ref |
Expression |
1 |
|
simprlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ) → 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) |
2 |
|
cgr3rflx |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ) → ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ) |
5 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ) → ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) |
6 |
1 4 5
|
3jca |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ) |
7 |
|
simprll |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ) → 𝐴 ≠ 𝐵 ) |
8 |
6 7
|
jca |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ) → ( ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ∧ 𝐴 ≠ 𝐵 ) ) |
9 |
8
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) → ( ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ∧ 𝐴 ≠ 𝐵 ) ) ) |
10 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
11 |
|
simp21 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
12 |
|
simp22 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
13 |
|
simp23 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
14 |
|
simp3l |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
15 |
|
simp3r |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |
16 |
|
brfs |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝑃 ⟩ ⟩ FiveSeg ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝑄 ⟩ ⟩ ↔ ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ) ) |
17 |
16
|
anbi1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝑃 ⟩ ⟩ FiveSeg ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝑄 ⟩ ⟩ ∧ 𝐴 ≠ 𝐵 ) ↔ ( ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ∧ 𝐴 ≠ 𝐵 ) ) ) |
18 |
|
fscgr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝑃 ⟩ ⟩ FiveSeg ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝑄 ⟩ ⟩ ∧ 𝐴 ≠ 𝐵 ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ ) ) |
19 |
17 18
|
sylbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ∧ 𝐴 ≠ 𝐵 ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ ) ) |
20 |
10 11 12 13 14 11 12 13 15 19
|
syl333anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ Cgr3 ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) ∧ 𝐴 ≠ 𝐵 ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ ) ) |
21 |
9 20
|
syld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑃 ⟩ Cgr ⟨ 𝐴 , 𝑄 ⟩ ∧ ⟨ 𝐵 , 𝑃 ⟩ Cgr ⟨ 𝐵 , 𝑄 ⟩ ) ) → ⟨ 𝐶 , 𝑃 ⟩ Cgr ⟨ 𝐶 , 𝑄 ⟩ ) ) |