Step |
Hyp |
Ref |
Expression |
1 |
|
simprlr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> A Colinear <. B , C >. ) |
2 |
|
cgr3rflx |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. ) |
3 |
2
|
3adant3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. ) |
4 |
3
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. ) |
5 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) |
6 |
1 4 5
|
3jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) |
7 |
|
simprll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> A =/= B ) |
8 |
6 7
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) /\ A =/= B ) ) |
9 |
8
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) /\ A =/= B ) ) ) |
10 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> N e. NN ) |
11 |
|
simp21 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
12 |
|
simp22 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
13 |
|
simp23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
14 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) |
15 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) |
16 |
|
brfs |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , P >. >. FiveSeg <. <. A , B >. , <. C , Q >. >. <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) ) |
17 |
16
|
anbi1d |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( <. <. A , B >. , <. C , P >. >. FiveSeg <. <. A , B >. , <. C , Q >. >. /\ A =/= B ) <-> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) /\ A =/= B ) ) ) |
18 |
|
fscgr |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( <. <. A , B >. , <. C , P >. >. FiveSeg <. <. A , B >. , <. C , Q >. >. /\ A =/= B ) -> <. C , P >. Cgr <. C , Q >. ) ) |
19 |
17 18
|
sylbird |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) /\ A =/= B ) -> <. C , P >. Cgr <. C , Q >. ) ) |
20 |
10 11 12 13 14 11 12 13 15 19
|
syl333anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) /\ A =/= B ) -> <. C , P >. Cgr <. C , Q >. ) ) |
21 |
9 20
|
syld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) -> <. C , P >. Cgr <. C , Q >. ) ) |