| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprlr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> A Colinear <. B , C >. ) | 
						
							| 2 |  | cgr3rflx |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. ) | 
						
							| 5 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) | 
						
							| 6 | 1 4 5 | 3jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) | 
						
							| 7 |  | simprll |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> A =/= B ) | 
						
							| 8 | 6 7 | jca |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) /\ ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) /\ A =/= B ) ) | 
						
							| 9 | 8 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) /\ A =/= B ) ) ) | 
						
							| 10 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 11 |  | simp21 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 12 |  | simp22 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 13 |  | simp23 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 14 |  | simp3l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) | 
						
							| 15 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) | 
						
							| 16 |  | brfs |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , P >. >. FiveSeg <. <. A , B >. , <. C , Q >. >. <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) ) ) | 
						
							| 17 | 16 | anbi1d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( <. <. A , B >. , <. C , P >. >. FiveSeg <. <. A , B >. , <. C , Q >. >. /\ A =/= B ) <-> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) /\ A =/= B ) ) ) | 
						
							| 18 |  | fscgr |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( <. <. A , B >. , <. C , P >. >. FiveSeg <. <. A , B >. , <. C , Q >. >. /\ A =/= B ) -> <. C , P >. Cgr <. C , Q >. ) ) | 
						
							| 19 | 17 18 | sylbird |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) /\ A =/= B ) -> <. C , P >. Cgr <. C , Q >. ) ) | 
						
							| 20 | 10 11 12 13 14 11 12 13 15 19 | syl333anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. A , <. B , C >. >. /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) /\ A =/= B ) -> <. C , P >. Cgr <. C , Q >. ) ) | 
						
							| 21 | 9 20 | syld |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , P >. Cgr <. A , Q >. /\ <. B , P >. Cgr <. B , Q >. ) ) -> <. C , P >. Cgr <. C , Q >. ) ) |