| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brfs |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. FiveSeg <. <. E , F >. , <. G , H >. >. <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) | 
						
							| 2 | 1 | anbi1d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. <. A , B >. , <. C , D >. >. FiveSeg <. <. E , F >. , <. G , H >. >. /\ A =/= B ) <-> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) /\ A =/= B ) ) ) | 
						
							| 3 |  | simp11 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 4 |  | simp12 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 5 |  | simp13 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 6 |  | simp21 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 7 |  | brcolinear |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 8 | 3 4 5 6 7 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) | 
						
							| 9 |  | simp23 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) | 
						
							| 10 |  | simp31 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) | 
						
							| 11 |  | simp32 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> G e. ( EE ` N ) ) | 
						
							| 12 |  | cgr3permute2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ G e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. <-> <. B , <. A , C >. >. Cgr3 <. F , <. E , G >. >. ) ) | 
						
							| 13 | 3 4 5 6 9 10 11 12 | syl133anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. <-> <. B , <. A , C >. >. Cgr3 <. F , <. E , G >. >. ) ) | 
						
							| 14 |  | ancom |  |-  ( ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) <-> ( <. B , D >. Cgr <. F , H >. /\ <. A , D >. Cgr <. E , H >. ) ) | 
						
							| 15 | 14 | a1i |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) <-> ( <. B , D >. Cgr <. F , H >. /\ <. A , D >. Cgr <. E , H >. ) ) ) | 
						
							| 16 | 13 15 | 3anbi23d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) <-> ( A Btwn <. B , C >. /\ <. B , <. A , C >. >. Cgr3 <. F , <. E , G >. >. /\ ( <. B , D >. Cgr <. F , H >. /\ <. A , D >. Cgr <. E , H >. ) ) ) ) | 
						
							| 17 |  | simp22 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 18 |  | simp33 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> H e. ( EE ` N ) ) | 
						
							| 19 |  | brofs2 |  |-  ( ( ( N e. NN /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. B , A >. , <. C , D >. >. OuterFiveSeg <. <. F , E >. , <. G , H >. >. <-> ( A Btwn <. B , C >. /\ <. B , <. A , C >. >. Cgr3 <. F , <. E , G >. >. /\ ( <. B , D >. Cgr <. F , H >. /\ <. A , D >. Cgr <. E , H >. ) ) ) ) | 
						
							| 20 | 3 5 4 6 17 10 9 11 18 19 | syl333anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. B , A >. , <. C , D >. >. OuterFiveSeg <. <. F , E >. , <. G , H >. >. <-> ( A Btwn <. B , C >. /\ <. B , <. A , C >. >. Cgr3 <. F , <. E , G >. >. /\ ( <. B , D >. Cgr <. F , H >. /\ <. A , D >. Cgr <. E , H >. ) ) ) ) | 
						
							| 21 | 16 20 | bitr4d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) <-> <. <. B , A >. , <. C , D >. >. OuterFiveSeg <. <. F , E >. , <. G , H >. >. ) ) | 
						
							| 22 |  | necom |  |-  ( A =/= B <-> B =/= A ) | 
						
							| 23 | 22 | a1i |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( A =/= B <-> B =/= A ) ) | 
						
							| 24 | 21 23 | anbi12d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( A Btwn <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) /\ A =/= B ) <-> ( <. <. B , A >. , <. C , D >. >. OuterFiveSeg <. <. F , E >. , <. G , H >. >. /\ B =/= A ) ) ) | 
						
							| 25 |  | 5segofs |  |-  ( ( ( N e. NN /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ F e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. <. B , A >. , <. C , D >. >. OuterFiveSeg <. <. F , E >. , <. G , H >. >. /\ B =/= A ) -> <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 26 | 3 5 4 6 17 10 9 11 18 25 | syl333anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. <. B , A >. , <. C , D >. >. OuterFiveSeg <. <. F , E >. , <. G , H >. >. /\ B =/= A ) -> <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 27 | 24 26 | sylbid |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( A Btwn <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) /\ A =/= B ) -> <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 28 | 27 | expd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) -> ( A =/= B -> <. C , D >. Cgr <. G , H >. ) ) ) | 
						
							| 29 | 28 | 3expd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. -> ( ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) -> ( A =/= B -> <. C , D >. Cgr <. G , H >. ) ) ) ) ) | 
						
							| 30 |  | btwncom |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. <-> B Btwn <. A , C >. ) ) | 
						
							| 31 | 3 5 6 4 30 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. <-> B Btwn <. A , C >. ) ) | 
						
							| 32 | 31 | 3anbi1d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( B Btwn <. C , A >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) <-> ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) | 
						
							| 33 |  | brofs2 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. OuterFiveSeg <. <. E , F >. , <. G , H >. >. <-> ( B Btwn <. A , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) | 
						
							| 34 | 32 33 | bitr4d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( B Btwn <. C , A >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) <-> <. <. A , B >. , <. C , D >. >. OuterFiveSeg <. <. E , F >. , <. G , H >. >. ) ) | 
						
							| 35 | 34 | anbi1d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. C , A >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) /\ A =/= B ) <-> ( <. <. A , B >. , <. C , D >. >. OuterFiveSeg <. <. E , F >. , <. G , H >. >. /\ A =/= B ) ) ) | 
						
							| 36 |  | 5segofs |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. <. A , B >. , <. C , D >. >. OuterFiveSeg <. <. E , F >. , <. G , H >. >. /\ A =/= B ) -> <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 37 | 35 36 | sylbid |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( B Btwn <. C , A >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) /\ A =/= B ) -> <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 38 | 37 | expd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( B Btwn <. C , A >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) -> ( A =/= B -> <. C , D >. Cgr <. G , H >. ) ) ) | 
						
							| 39 | 38 | 3expd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. -> ( ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) -> ( A =/= B -> <. C , D >. Cgr <. G , H >. ) ) ) ) ) | 
						
							| 40 |  | cgr3permute1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ F e. ( EE ` N ) /\ G e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. <-> <. A , <. C , B >. >. Cgr3 <. E , <. G , F >. >. ) ) | 
						
							| 41 | 3 4 5 6 9 10 11 40 | syl133anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. <-> <. A , <. C , B >. >. Cgr3 <. E , <. G , F >. >. ) ) | 
						
							| 42 | 41 | 3anbi2d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) <-> ( C Btwn <. A , B >. /\ <. A , <. C , B >. >. Cgr3 <. E , <. G , F >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) | 
						
							| 43 |  | brifs2 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ F e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , C >. , <. B , D >. >. InnerFiveSeg <. <. E , G >. , <. F , H >. >. <-> ( C Btwn <. A , B >. /\ <. A , <. C , B >. >. Cgr3 <. E , <. G , F >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) | 
						
							| 44 | 3 4 6 5 17 9 11 10 18 43 | syl333anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , C >. , <. B , D >. >. InnerFiveSeg <. <. E , G >. , <. F , H >. >. <-> ( C Btwn <. A , B >. /\ <. A , <. C , B >. >. Cgr3 <. E , <. G , F >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) | 
						
							| 45 | 42 44 | bitr4d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) <-> <. <. A , C >. , <. B , D >. >. InnerFiveSeg <. <. E , G >. , <. F , H >. >. ) ) | 
						
							| 46 |  | ifscgr |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( G e. ( EE ` N ) /\ F e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , C >. , <. B , D >. >. InnerFiveSeg <. <. E , G >. , <. F , H >. >. -> <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 47 | 3 4 6 5 17 9 11 10 18 46 | syl333anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , C >. , <. B , D >. >. InnerFiveSeg <. <. E , G >. , <. F , H >. >. -> <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 48 | 45 47 | sylbid |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) -> <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 49 | 48 | a1dd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) -> ( A =/= B -> <. C , D >. Cgr <. G , H >. ) ) ) | 
						
							| 50 | 49 | 3expd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. -> ( ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) -> ( A =/= B -> <. C , D >. Cgr <. G , H >. ) ) ) ) ) | 
						
							| 51 | 29 39 50 | 3jaod |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. -> ( ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) -> ( A =/= B -> <. C , D >. Cgr <. G , H >. ) ) ) ) ) | 
						
							| 52 | 8 51 | sylbid |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. -> ( ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) -> ( A =/= B -> <. C , D >. Cgr <. G , H >. ) ) ) ) ) | 
						
							| 53 | 52 | 3impd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) -> ( A =/= B -> <. C , D >. Cgr <. G , H >. ) ) ) | 
						
							| 54 | 53 | impd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) /\ A =/= B ) -> <. C , D >. Cgr <. G , H >. ) ) | 
						
							| 55 | 2 54 | sylbid |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( ( <. <. A , B >. , <. C , D >. >. FiveSeg <. <. E , F >. , <. G , H >. >. /\ A =/= B ) -> <. C , D >. Cgr <. G , H >. ) ) |