Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( a = A -> ( a Colinear <. b , c >. <-> A Colinear <. b , c >. ) ) |
2 |
|
opeq1 |
|- ( a = A -> <. a , <. b , c >. >. = <. A , <. b , c >. >. ) |
3 |
2
|
breq1d |
|- ( a = A -> ( <. a , <. b , c >. >. Cgr3 <. e , <. f , g >. >. <-> <. A , <. b , c >. >. Cgr3 <. e , <. f , g >. >. ) ) |
4 |
|
opeq1 |
|- ( a = A -> <. a , d >. = <. A , d >. ) |
5 |
4
|
breq1d |
|- ( a = A -> ( <. a , d >. Cgr <. e , h >. <-> <. A , d >. Cgr <. e , h >. ) ) |
6 |
5
|
anbi1d |
|- ( a = A -> ( ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) <-> ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) |
7 |
1 3 6
|
3anbi123d |
|- ( a = A -> ( ( a Colinear <. b , c >. /\ <. a , <. b , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) <-> ( A Colinear <. b , c >. /\ <. A , <. b , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) ) |
8 |
|
opeq1 |
|- ( b = B -> <. b , c >. = <. B , c >. ) |
9 |
8
|
breq2d |
|- ( b = B -> ( A Colinear <. b , c >. <-> A Colinear <. B , c >. ) ) |
10 |
8
|
opeq2d |
|- ( b = B -> <. A , <. b , c >. >. = <. A , <. B , c >. >. ) |
11 |
10
|
breq1d |
|- ( b = B -> ( <. A , <. b , c >. >. Cgr3 <. e , <. f , g >. >. <-> <. A , <. B , c >. >. Cgr3 <. e , <. f , g >. >. ) ) |
12 |
|
opeq1 |
|- ( b = B -> <. b , d >. = <. B , d >. ) |
13 |
12
|
breq1d |
|- ( b = B -> ( <. b , d >. Cgr <. f , h >. <-> <. B , d >. Cgr <. f , h >. ) ) |
14 |
13
|
anbi2d |
|- ( b = B -> ( ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) <-> ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) |
15 |
9 11 14
|
3anbi123d |
|- ( b = B -> ( ( A Colinear <. b , c >. /\ <. A , <. b , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) <-> ( A Colinear <. B , c >. /\ <. A , <. B , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) ) |
16 |
|
opeq2 |
|- ( c = C -> <. B , c >. = <. B , C >. ) |
17 |
16
|
breq2d |
|- ( c = C -> ( A Colinear <. B , c >. <-> A Colinear <. B , C >. ) ) |
18 |
16
|
opeq2d |
|- ( c = C -> <. A , <. B , c >. >. = <. A , <. B , C >. >. ) |
19 |
18
|
breq1d |
|- ( c = C -> ( <. A , <. B , c >. >. Cgr3 <. e , <. f , g >. >. <-> <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. ) ) |
20 |
17 19
|
3anbi12d |
|- ( c = C -> ( ( A Colinear <. B , c >. /\ <. A , <. B , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) ) |
21 |
|
opeq2 |
|- ( d = D -> <. A , d >. = <. A , D >. ) |
22 |
21
|
breq1d |
|- ( d = D -> ( <. A , d >. Cgr <. e , h >. <-> <. A , D >. Cgr <. e , h >. ) ) |
23 |
|
opeq2 |
|- ( d = D -> <. B , d >. = <. B , D >. ) |
24 |
23
|
breq1d |
|- ( d = D -> ( <. B , d >. Cgr <. f , h >. <-> <. B , D >. Cgr <. f , h >. ) ) |
25 |
22 24
|
anbi12d |
|- ( d = D -> ( ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) |
26 |
25
|
3anbi3d |
|- ( d = D -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) ) |
27 |
|
opeq1 |
|- ( e = E -> <. e , <. f , g >. >. = <. E , <. f , g >. >. ) |
28 |
27
|
breq2d |
|- ( e = E -> ( <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. <-> <. A , <. B , C >. >. Cgr3 <. E , <. f , g >. >. ) ) |
29 |
|
opeq1 |
|- ( e = E -> <. e , h >. = <. E , h >. ) |
30 |
29
|
breq2d |
|- ( e = E -> ( <. A , D >. Cgr <. e , h >. <-> <. A , D >. Cgr <. E , h >. ) ) |
31 |
30
|
anbi1d |
|- ( e = E -> ( ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) |
32 |
28 31
|
3anbi23d |
|- ( e = E -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. f , g >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) ) |
33 |
|
opeq1 |
|- ( f = F -> <. f , g >. = <. F , g >. ) |
34 |
33
|
opeq2d |
|- ( f = F -> <. E , <. f , g >. >. = <. E , <. F , g >. >. ) |
35 |
34
|
breq2d |
|- ( f = F -> ( <. A , <. B , C >. >. Cgr3 <. E , <. f , g >. >. <-> <. A , <. B , C >. >. Cgr3 <. E , <. F , g >. >. ) ) |
36 |
|
opeq1 |
|- ( f = F -> <. f , h >. = <. F , h >. ) |
37 |
36
|
breq2d |
|- ( f = F -> ( <. B , D >. Cgr <. f , h >. <-> <. B , D >. Cgr <. F , h >. ) ) |
38 |
37
|
anbi2d |
|- ( f = F -> ( ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) |
39 |
35 38
|
3anbi23d |
|- ( f = F -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. f , g >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , g >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) ) |
40 |
|
opeq2 |
|- ( g = G -> <. F , g >. = <. F , G >. ) |
41 |
40
|
opeq2d |
|- ( g = G -> <. E , <. F , g >. >. = <. E , <. F , G >. >. ) |
42 |
41
|
breq2d |
|- ( g = G -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , g >. >. <-> <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. ) ) |
43 |
42
|
3anbi2d |
|- ( g = G -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , g >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) ) |
44 |
|
opeq2 |
|- ( h = H -> <. E , h >. = <. E , H >. ) |
45 |
44
|
breq2d |
|- ( h = H -> ( <. A , D >. Cgr <. E , h >. <-> <. A , D >. Cgr <. E , H >. ) ) |
46 |
|
opeq2 |
|- ( h = H -> <. F , h >. = <. F , H >. ) |
47 |
46
|
breq2d |
|- ( h = H -> ( <. B , D >. Cgr <. F , h >. <-> <. B , D >. Cgr <. F , H >. ) ) |
48 |
45 47
|
anbi12d |
|- ( h = H -> ( ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) <-> ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) |
49 |
48
|
3anbi3d |
|- ( h = H -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) |
50 |
|
fveq2 |
|- ( n = N -> ( EE ` n ) = ( EE ` N ) ) |
51 |
|
df-fs |
|- FiveSeg = { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) E. e e. ( EE ` n ) E. f e. ( EE ` n ) E. g e. ( EE ` n ) E. h e. ( EE ` n ) ( p = <. <. a , b >. , <. c , d >. >. /\ q = <. <. e , f >. , <. g , h >. >. /\ ( a Colinear <. b , c >. /\ <. a , <. b , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) } |
52 |
7 15 20 26 32 39 43 49 50 51
|
br8 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. FiveSeg <. <. E , F >. , <. G , H >. >. <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) |