| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 |  |-  ( a = A -> ( a Colinear <. b , c >. <-> A Colinear <. b , c >. ) ) | 
						
							| 2 |  | opeq1 |  |-  ( a = A -> <. a , <. b , c >. >. = <. A , <. b , c >. >. ) | 
						
							| 3 | 2 | breq1d |  |-  ( a = A -> ( <. a , <. b , c >. >. Cgr3 <. e , <. f , g >. >. <-> <. A , <. b , c >. >. Cgr3 <. e , <. f , g >. >. ) ) | 
						
							| 4 |  | opeq1 |  |-  ( a = A -> <. a , d >. = <. A , d >. ) | 
						
							| 5 | 4 | breq1d |  |-  ( a = A -> ( <. a , d >. Cgr <. e , h >. <-> <. A , d >. Cgr <. e , h >. ) ) | 
						
							| 6 | 5 | anbi1d |  |-  ( a = A -> ( ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) <-> ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) | 
						
							| 7 | 1 3 6 | 3anbi123d |  |-  ( a = A -> ( ( a Colinear <. b , c >. /\ <. a , <. b , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) <-> ( A Colinear <. b , c >. /\ <. A , <. b , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) ) | 
						
							| 8 |  | opeq1 |  |-  ( b = B -> <. b , c >. = <. B , c >. ) | 
						
							| 9 | 8 | breq2d |  |-  ( b = B -> ( A Colinear <. b , c >. <-> A Colinear <. B , c >. ) ) | 
						
							| 10 | 8 | opeq2d |  |-  ( b = B -> <. A , <. b , c >. >. = <. A , <. B , c >. >. ) | 
						
							| 11 | 10 | breq1d |  |-  ( b = B -> ( <. A , <. b , c >. >. Cgr3 <. e , <. f , g >. >. <-> <. A , <. B , c >. >. Cgr3 <. e , <. f , g >. >. ) ) | 
						
							| 12 |  | opeq1 |  |-  ( b = B -> <. b , d >. = <. B , d >. ) | 
						
							| 13 | 12 | breq1d |  |-  ( b = B -> ( <. b , d >. Cgr <. f , h >. <-> <. B , d >. Cgr <. f , h >. ) ) | 
						
							| 14 | 13 | anbi2d |  |-  ( b = B -> ( ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) <-> ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) | 
						
							| 15 | 9 11 14 | 3anbi123d |  |-  ( b = B -> ( ( A Colinear <. b , c >. /\ <. A , <. b , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) <-> ( A Colinear <. B , c >. /\ <. A , <. B , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) ) | 
						
							| 16 |  | opeq2 |  |-  ( c = C -> <. B , c >. = <. B , C >. ) | 
						
							| 17 | 16 | breq2d |  |-  ( c = C -> ( A Colinear <. B , c >. <-> A Colinear <. B , C >. ) ) | 
						
							| 18 | 16 | opeq2d |  |-  ( c = C -> <. A , <. B , c >. >. = <. A , <. B , C >. >. ) | 
						
							| 19 | 18 | breq1d |  |-  ( c = C -> ( <. A , <. B , c >. >. Cgr3 <. e , <. f , g >. >. <-> <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. ) ) | 
						
							| 20 | 17 19 | 3anbi12d |  |-  ( c = C -> ( ( A Colinear <. B , c >. /\ <. A , <. B , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) ) | 
						
							| 21 |  | opeq2 |  |-  ( d = D -> <. A , d >. = <. A , D >. ) | 
						
							| 22 | 21 | breq1d |  |-  ( d = D -> ( <. A , d >. Cgr <. e , h >. <-> <. A , D >. Cgr <. e , h >. ) ) | 
						
							| 23 |  | opeq2 |  |-  ( d = D -> <. B , d >. = <. B , D >. ) | 
						
							| 24 | 23 | breq1d |  |-  ( d = D -> ( <. B , d >. Cgr <. f , h >. <-> <. B , D >. Cgr <. f , h >. ) ) | 
						
							| 25 | 22 24 | anbi12d |  |-  ( d = D -> ( ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) | 
						
							| 26 | 25 | 3anbi3d |  |-  ( d = D -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) ) | 
						
							| 27 |  | opeq1 |  |-  ( e = E -> <. e , <. f , g >. >. = <. E , <. f , g >. >. ) | 
						
							| 28 | 27 | breq2d |  |-  ( e = E -> ( <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. <-> <. A , <. B , C >. >. Cgr3 <. E , <. f , g >. >. ) ) | 
						
							| 29 |  | opeq1 |  |-  ( e = E -> <. e , h >. = <. E , h >. ) | 
						
							| 30 | 29 | breq2d |  |-  ( e = E -> ( <. A , D >. Cgr <. e , h >. <-> <. A , D >. Cgr <. E , h >. ) ) | 
						
							| 31 | 30 | anbi1d |  |-  ( e = E -> ( ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) | 
						
							| 32 | 28 31 | 3anbi23d |  |-  ( e = E -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. f , g >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) ) | 
						
							| 33 |  | opeq1 |  |-  ( f = F -> <. f , g >. = <. F , g >. ) | 
						
							| 34 | 33 | opeq2d |  |-  ( f = F -> <. E , <. f , g >. >. = <. E , <. F , g >. >. ) | 
						
							| 35 | 34 | breq2d |  |-  ( f = F -> ( <. A , <. B , C >. >. Cgr3 <. E , <. f , g >. >. <-> <. A , <. B , C >. >. Cgr3 <. E , <. F , g >. >. ) ) | 
						
							| 36 |  | opeq1 |  |-  ( f = F -> <. f , h >. = <. F , h >. ) | 
						
							| 37 | 36 | breq2d |  |-  ( f = F -> ( <. B , D >. Cgr <. f , h >. <-> <. B , D >. Cgr <. F , h >. ) ) | 
						
							| 38 | 37 | anbi2d |  |-  ( f = F -> ( ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) | 
						
							| 39 | 35 38 | 3anbi23d |  |-  ( f = F -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. f , g >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , g >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) ) | 
						
							| 40 |  | opeq2 |  |-  ( g = G -> <. F , g >. = <. F , G >. ) | 
						
							| 41 | 40 | opeq2d |  |-  ( g = G -> <. E , <. F , g >. >. = <. E , <. F , G >. >. ) | 
						
							| 42 | 41 | breq2d |  |-  ( g = G -> ( <. A , <. B , C >. >. Cgr3 <. E , <. F , g >. >. <-> <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. ) ) | 
						
							| 43 | 42 | 3anbi2d |  |-  ( g = G -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , g >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) ) | 
						
							| 44 |  | opeq2 |  |-  ( h = H -> <. E , h >. = <. E , H >. ) | 
						
							| 45 | 44 | breq2d |  |-  ( h = H -> ( <. A , D >. Cgr <. E , h >. <-> <. A , D >. Cgr <. E , H >. ) ) | 
						
							| 46 |  | opeq2 |  |-  ( h = H -> <. F , h >. = <. F , H >. ) | 
						
							| 47 | 46 | breq2d |  |-  ( h = H -> ( <. B , D >. Cgr <. F , h >. <-> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 48 | 45 47 | anbi12d |  |-  ( h = H -> ( ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) <-> ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 49 | 48 | 3anbi3d |  |-  ( h = H -> ( ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) | 
						
							| 50 |  | fveq2 |  |-  ( n = N -> ( EE ` n ) = ( EE ` N ) ) | 
						
							| 51 |  | df-fs |  |-  FiveSeg = { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) E. e e. ( EE ` n ) E. f e. ( EE ` n ) E. g e. ( EE ` n ) E. h e. ( EE ` n ) ( p = <. <. a , b >. , <. c , d >. >. /\ q = <. <. e , f >. , <. g , h >. >. /\ ( a Colinear <. b , c >. /\ <. a , <. b , c >. >. Cgr3 <. e , <. f , g >. >. /\ ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) } | 
						
							| 52 | 7 15 20 26 32 39 43 49 50 51 | br8 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. FiveSeg <. <. E , F >. , <. G , H >. >. <-> ( A Colinear <. B , C >. /\ <. A , <. B , C >. >. Cgr3 <. E , <. F , G >. >. /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) |