Metamath Proof Explorer


Theorem lineid

Description: Identity law for points on lines. Theorem 4.18 of Schwabhauser p. 38. (Contributed by Scott Fenton, 7-Oct-2013)

Ref Expression
Assertion lineid
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) -> C = D ) )

Proof

Step Hyp Ref Expression
1 simp2l
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) )
2 simp2r
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) )
3 simp3l
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) )
4 1 2 3 3jca
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) )
5 linecgr
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) -> <. C , C >. Cgr <. C , D >. ) )
6 4 5 syld3an2
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) -> <. C , C >. Cgr <. C , D >. ) )
7 simp1
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN )
8 simp3r
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) )
9 cgrid2
 |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , D >. -> C = D ) )
10 7 3 3 8 9 syl13anc
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , D >. -> C = D ) )
11 6 10 syld
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) -> C = D ) )