Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) |
2 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
3 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
4 |
|
cgrid2 |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , D >. -> C = D ) ) |
5 |
1 2 2 3 4
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. C , C >. Cgr <. C , D >. -> C = D ) ) |
6 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
7 |
|
axbtwnid |
|- ( ( N e. NN /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> ( C Btwn <. A , A >. -> C = A ) ) |
8 |
1 2 6 7
|
syl3anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. A , A >. -> C = A ) ) |
9 |
|
opeq1 |
|- ( C = A -> <. C , C >. = <. A , C >. ) |
10 |
|
opeq1 |
|- ( C = A -> <. C , D >. = <. A , D >. ) |
11 |
9 10
|
breq12d |
|- ( C = A -> ( <. C , C >. Cgr <. C , D >. <-> <. A , C >. Cgr <. A , D >. ) ) |
12 |
11
|
imbi1d |
|- ( C = A -> ( ( <. C , C >. Cgr <. C , D >. -> C = D ) <-> ( <. A , C >. Cgr <. A , D >. -> C = D ) ) ) |
13 |
12
|
biimpcd |
|- ( ( <. C , C >. Cgr <. C , D >. -> C = D ) -> ( C = A -> ( <. A , C >. Cgr <. A , D >. -> C = D ) ) ) |
14 |
|
ax-1 |
|- ( C = D -> ( <. B , C >. Cgr <. B , D >. -> C = D ) ) |
15 |
13 14
|
syl8 |
|- ( ( <. C , C >. Cgr <. C , D >. -> C = D ) -> ( C = A -> ( <. A , C >. Cgr <. A , D >. -> ( <. B , C >. Cgr <. B , D >. -> C = D ) ) ) ) |
16 |
5 8 15
|
sylsyld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. A , A >. -> ( <. A , C >. Cgr <. A , D >. -> ( <. B , C >. Cgr <. B , D >. -> C = D ) ) ) ) |
17 |
16
|
3impd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , A >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> C = D ) ) |
18 |
|
opeq2 |
|- ( A = B -> <. A , A >. = <. A , B >. ) |
19 |
18
|
breq2d |
|- ( A = B -> ( C Btwn <. A , A >. <-> C Btwn <. A , B >. ) ) |
20 |
19
|
3anbi1d |
|- ( A = B -> ( ( C Btwn <. A , A >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) <-> ( C Btwn <. A , B >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) ) |
21 |
20
|
imbi1d |
|- ( A = B -> ( ( ( C Btwn <. A , A >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> C = D ) <-> ( ( C Btwn <. A , B >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> C = D ) ) ) |
22 |
17 21
|
syl5ib |
|- ( A = B -> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> C = D ) ) ) |
23 |
|
simpr1 |
|- ( ( A =/= B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> N e. NN ) |
24 |
|
simpr2l |
|- ( ( A =/= B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> A e. ( EE ` N ) ) |
25 |
|
simpr2r |
|- ( ( A =/= B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> B e. ( EE ` N ) ) |
26 |
|
simpr3l |
|- ( ( A =/= B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> C e. ( EE ` N ) ) |
27 |
|
btwncolinear1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> A Colinear <. B , C >. ) ) |
28 |
23 24 25 26 27
|
syl13anc |
|- ( ( A =/= B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> ( C Btwn <. A , B >. -> A Colinear <. B , C >. ) ) |
29 |
|
idd |
|- ( ( A =/= B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> ( <. A , C >. Cgr <. A , D >. -> <. A , C >. Cgr <. A , D >. ) ) |
30 |
|
idd |
|- ( ( A =/= B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> ( <. B , C >. Cgr <. B , D >. -> <. B , C >. Cgr <. B , D >. ) ) |
31 |
28 29 30
|
3anim123d |
|- ( ( A =/= B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> ( A Colinear <. B , C >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) ) |
32 |
|
simp1 |
|- ( ( A Colinear <. B , C >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> A Colinear <. B , C >. ) |
33 |
32
|
anim2i |
|- ( ( A =/= B /\ ( A Colinear <. B , C >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) -> ( A =/= B /\ A Colinear <. B , C >. ) ) |
34 |
|
3simpc |
|- ( ( A Colinear <. B , C >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> ( <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) |
35 |
34
|
adantl |
|- ( ( A =/= B /\ ( A Colinear <. B , C >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) -> ( <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) |
36 |
33 35
|
jca |
|- ( ( A =/= B /\ ( A Colinear <. B , C >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) -> ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) ) |
37 |
|
lineid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( A =/= B /\ A Colinear <. B , C >. ) /\ ( <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) -> C = D ) ) |
38 |
36 37
|
syl5 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( A =/= B /\ ( A Colinear <. B , C >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) ) -> C = D ) ) |
39 |
38
|
expd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( A =/= B -> ( ( A Colinear <. B , C >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> C = D ) ) ) |
40 |
39
|
impcom |
|- ( ( A =/= B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> ( ( A Colinear <. B , C >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> C = D ) ) |
41 |
31 40
|
syld |
|- ( ( A =/= B /\ ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> C = D ) ) |
42 |
41
|
ex |
|- ( A =/= B -> ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> C = D ) ) ) |
43 |
22 42
|
pm2.61ine |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , B >. /\ <. A , C >. Cgr <. A , D >. /\ <. B , C >. Cgr <. B , D >. ) -> C = D ) ) |