Metamath Proof Explorer


Theorem idinside

Description: Law for finding a point inside a segment. Theorem 4.19 of Schwabhauser p. 38. (Contributed by Scott Fenton, 7-Oct-2013)

Ref Expression
Assertion idinside N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A B A C Cgr A D B C Cgr B D C = D

Proof

Step Hyp Ref Expression
1 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N N
2 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N
3 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N
4 cgrid2 N C 𝔼 N C 𝔼 N D 𝔼 N C C Cgr C D C = D
5 1 2 2 3 4 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C C Cgr C D C = D
6 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A 𝔼 N
7 axbtwnid N C 𝔼 N A 𝔼 N C Btwn A A C = A
8 1 2 6 7 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A A C = A
9 opeq1 C = A C C = A C
10 opeq1 C = A C D = A D
11 9 10 breq12d C = A C C Cgr C D A C Cgr A D
12 11 imbi1d C = A C C Cgr C D C = D A C Cgr A D C = D
13 12 biimpcd C C Cgr C D C = D C = A A C Cgr A D C = D
14 ax-1 C = D B C Cgr B D C = D
15 13 14 syl8 C C Cgr C D C = D C = A A C Cgr A D B C Cgr B D C = D
16 5 8 15 sylsyld N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A A A C Cgr A D B C Cgr B D C = D
17 16 3impd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A A A C Cgr A D B C Cgr B D C = D
18 opeq2 A = B A A = A B
19 18 breq2d A = B C Btwn A A C Btwn A B
20 19 3anbi1d A = B C Btwn A A A C Cgr A D B C Cgr B D C Btwn A B A C Cgr A D B C Cgr B D
21 20 imbi1d A = B C Btwn A A A C Cgr A D B C Cgr B D C = D C Btwn A B A C Cgr A D B C Cgr B D C = D
22 17 21 syl5ib A = B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A B A C Cgr A D B C Cgr B D C = D
23 simpr1 A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N N
24 simpr2l A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A 𝔼 N
25 simpr2r A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B 𝔼 N
26 simpr3l A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N
27 btwncolinear1 N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A Colinear B C
28 23 24 25 26 27 syl13anc A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A B A Colinear B C
29 idd A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A C Cgr A D A C Cgr A D
30 idd A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C Cgr B D B C Cgr B D
31 28 29 30 3anim123d A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A B A C Cgr A D B C Cgr B D A Colinear B C A C Cgr A D B C Cgr B D
32 simp1 A Colinear B C A C Cgr A D B C Cgr B D A Colinear B C
33 32 anim2i A B A Colinear B C A C Cgr A D B C Cgr B D A B A Colinear B C
34 3simpc A Colinear B C A C Cgr A D B C Cgr B D A C Cgr A D B C Cgr B D
35 34 adantl A B A Colinear B C A C Cgr A D B C Cgr B D A C Cgr A D B C Cgr B D
36 33 35 jca A B A Colinear B C A C Cgr A D B C Cgr B D A B A Colinear B C A C Cgr A D B C Cgr B D
37 lineid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B A Colinear B C A C Cgr A D B C Cgr B D C = D
38 36 37 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B A Colinear B C A C Cgr A D B C Cgr B D C = D
39 38 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B A Colinear B C A C Cgr A D B C Cgr B D C = D
40 39 impcom A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A Colinear B C A C Cgr A D B C Cgr B D C = D
41 31 40 syld A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A B A C Cgr A D B C Cgr B D C = D
42 41 ex A B N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A B A C Cgr A D B C Cgr B D C = D
43 22 42 pm2.61ine N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A B A C Cgr A D B C Cgr B D C = D