Metamath Proof Explorer


Theorem btwnconn1lem5

Description: Lemma for btwnconn1 . Now, we introduce E , the intersection of C c and D d . We begin by showing that it is the midpoint of C and c . (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem5 ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ )

Proof

Step Hyp Ref Expression
1 simprrr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ )
2 simp11 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ )
3 simp22 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
4 simp33 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
5 simp31 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) )
6 cgr3rflx ( ( 𝑁 ∈ ℕ ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ )
7 2 3 4 5 6 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ )
8 7 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ )
9 simp2lr ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) → ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
10 9 ad2antrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
11 simp23 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) )
12 simp21 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
13 cgrcomr ( ( 𝑁 ∈ ℕ ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ ) )
14 2 3 11 12 3 13 syl122anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ ) )
15 cgrcom ( ( 𝑁 ∈ ℕ ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ ↔ ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝑐 ⟩ ) )
16 2 3 11 3 12 15 syl122anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ ↔ ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝑐 ⟩ ) )
17 14 16 bitrd ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝑐 ⟩ ) )
18 17 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ( ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝑐 ⟩ ) )
19 10 18 mpbid ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝑐 ⟩ )
20 simp2rr ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) → ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
21 20 ad2antrl ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
22 2 12 5 12 3 21 cgrcomlrand ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ⟨ 𝑑 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ )
23 3simpa ( ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) )
24 23 3anim3i ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) )
25 simpl ( ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) → ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) )
26 btwnconn1lem4 ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ) → ⟨ 𝑑 , 𝑐 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ )
27 24 25 26 syl2an ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ⟨ 𝑑 , 𝑐 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ )
28 2 5 12 5 11 3 12 22 27 cgrtr3and ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ⟨ 𝑑 , 𝐶 ⟩ Cgr ⟨ 𝑑 , 𝑐 ⟩ )
29 19 28 jca ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ( ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝑐 ⟩ ∧ ⟨ 𝑑 , 𝐶 ⟩ Cgr ⟨ 𝑑 , 𝑐 ⟩ ) )
30 brifs2 ( ( ( 𝑁 ∈ ℕ ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ ⟨ 𝐷 , 𝐸 ⟩ , ⟨ 𝑑 , 𝐶 ⟩ ⟩ InnerFiveSeg ⟨ ⟨ 𝐷 , 𝐸 ⟩ , ⟨ 𝑑 , 𝑐 ⟩ ⟩ ↔ ( 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ ∧ ( ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝑐 ⟩ ∧ ⟨ 𝑑 , 𝐶 ⟩ Cgr ⟨ 𝑑 , 𝑐 ⟩ ) ) ) )
31 ifscgr ( ( ( 𝑁 ∈ ℕ ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ ⟨ 𝐷 , 𝐸 ⟩ , ⟨ 𝑑 , 𝐶 ⟩ ⟩ InnerFiveSeg ⟨ ⟨ 𝐷 , 𝐸 ⟩ , ⟨ 𝑑 , 𝑐 ⟩ ⟩ → ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) )
32 30 31 sylbird ( ( ( 𝑁 ∈ ℕ ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ ∧ ( ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝑐 ⟩ ∧ ⟨ 𝑑 , 𝐶 ⟩ Cgr ⟨ 𝑑 , 𝑐 ⟩ ) ) → ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) )
33 2 3 4 5 12 3 4 5 11 32 syl333anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ ∧ ( ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝑐 ⟩ ∧ ⟨ 𝑑 , 𝐶 ⟩ Cgr ⟨ 𝑑 , 𝑐 ⟩ ) ) → ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) )
34 33 adantr ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ( ( 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ Cgr3 ⟨ 𝐷 , ⟨ 𝐸 , 𝑑 ⟩ ⟩ ∧ ( ⟨ 𝐷 , 𝐶 ⟩ Cgr ⟨ 𝐷 , 𝑐 ⟩ ∧ ⟨ 𝑑 , 𝐶 ⟩ Cgr ⟨ 𝑑 , 𝑐 ⟩ ) ) → ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ ) )
35 1 8 29 34 mp3and ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴𝐵𝐵𝐶𝐶𝑐 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) ) ∧ ( ( 𝐷 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ ⟨ 𝐷 , 𝑐 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ∧ ( 𝐶 Btwn ⟨ 𝐴 , 𝑑 ⟩ ∧ ⟨ 𝐶 , 𝑑 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) ) ∧ ( ( 𝑐 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑐 , 𝑏 ⟩ Cgr ⟨ 𝐶 , 𝐵 ⟩ ) ∧ ( 𝑑 Btwn ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝑑 , 𝑏 ⟩ Cgr ⟨ 𝐷 , 𝐵 ⟩ ) ) ) ∧ ( 𝐸 Btwn ⟨ 𝐶 , 𝑐 ⟩ ∧ 𝐸 Btwn ⟨ 𝐷 , 𝑑 ⟩ ) ) ) → ⟨ 𝐸 , 𝐶 ⟩ Cgr ⟨ 𝐸 , 𝑐 ⟩ )