Metamath Proof Explorer


Theorem btwnconn1lem5

Description: Lemma for btwnconn1 . Now, we introduce E , the intersection of C c and D d . We begin by showing that it is the midpoint of C and c . (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem5
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> <. E , C >. Cgr <. E , c >. )

Proof

Step Hyp Ref Expression
1 simprrr
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> E Btwn <. D , d >. )
2 simp11
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> N e. NN )
3 simp22
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> D e. ( EE ` N ) )
4 simp33
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> E e. ( EE ` N ) )
5 simp31
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> d e. ( EE ` N ) )
6 cgr3rflx
 |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> <. D , <. E , d >. >. Cgr3 <. D , <. E , d >. >. )
7 2 3 4 5 6 syl13anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> <. D , <. E , d >. >. Cgr3 <. D , <. E , d >. >. )
8 7 adantr
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> <. D , <. E , d >. >. Cgr3 <. D , <. E , d >. >. )
9 simp2lr
 |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> <. D , c >. Cgr <. C , D >. )
10 9 ad2antrl
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> <. D , c >. Cgr <. C , D >. )
11 simp23
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> c e. ( EE ` N ) )
12 simp21
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> C e. ( EE ` N ) )
13 cgrcomr
 |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. D , c >. Cgr <. C , D >. <-> <. D , c >. Cgr <. D , C >. ) )
14 2 3 11 12 3 13 syl122anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. D , c >. Cgr <. C , D >. <-> <. D , c >. Cgr <. D , C >. ) )
15 cgrcom
 |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. D , c >. Cgr <. D , C >. <-> <. D , C >. Cgr <. D , c >. ) )
16 2 3 11 3 12 15 syl122anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. D , c >. Cgr <. D , C >. <-> <. D , C >. Cgr <. D , c >. ) )
17 14 16 bitrd
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. D , c >. Cgr <. C , D >. <-> <. D , C >. Cgr <. D , c >. ) )
18 17 adantr
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> ( <. D , c >. Cgr <. C , D >. <-> <. D , C >. Cgr <. D , c >. ) )
19 10 18 mpbid
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> <. D , C >. Cgr <. D , c >. )
20 simp2rr
 |-  ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) -> <. C , d >. Cgr <. C , D >. )
21 20 ad2antrl
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> <. C , d >. Cgr <. C , D >. )
22 2 12 5 12 3 21 cgrcomlrand
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> <. d , C >. Cgr <. D , C >. )
23 3simpa
 |-  ( ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) -> ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) )
24 23 3anim3i
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) )
25 simpl
 |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) -> ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) )
26 btwnconn1lem4
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) /\ ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) ) -> <. d , c >. Cgr <. D , C >. )
27 24 25 26 syl2an
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> <. d , c >. Cgr <. D , C >. )
28 2 5 12 5 11 3 12 22 27 cgrtr3and
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> <. d , C >. Cgr <. d , c >. )
29 19 28 jca
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> ( <. D , C >. Cgr <. D , c >. /\ <. d , C >. Cgr <. d , c >. ) )
30 brifs2
 |-  ( ( ( N e. NN /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ d e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) -> ( <. <. D , E >. , <. d , C >. >. InnerFiveSeg <. <. D , E >. , <. d , c >. >. <-> ( E Btwn <. D , d >. /\ <. D , <. E , d >. >. Cgr3 <. D , <. E , d >. >. /\ ( <. D , C >. Cgr <. D , c >. /\ <. d , C >. Cgr <. d , c >. ) ) ) )
31 ifscgr
 |-  ( ( ( N e. NN /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ d e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) -> ( <. <. D , E >. , <. d , C >. >. InnerFiveSeg <. <. D , E >. , <. d , c >. >. -> <. E , C >. Cgr <. E , c >. ) )
32 30 31 sylbird
 |-  ( ( ( N e. NN /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ d e. ( EE ` N ) /\ c e. ( EE ` N ) ) ) -> ( ( E Btwn <. D , d >. /\ <. D , <. E , d >. >. Cgr3 <. D , <. E , d >. >. /\ ( <. D , C >. Cgr <. D , c >. /\ <. d , C >. Cgr <. d , c >. ) ) -> <. E , C >. Cgr <. E , c >. ) )
33 2 3 4 5 12 3 4 5 11 32 syl333anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( E Btwn <. D , d >. /\ <. D , <. E , d >. >. Cgr3 <. D , <. E , d >. >. /\ ( <. D , C >. Cgr <. D , c >. /\ <. d , C >. Cgr <. d , c >. ) ) -> <. E , C >. Cgr <. E , c >. ) )
34 33 adantr
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> ( ( E Btwn <. D , d >. /\ <. D , <. E , d >. >. Cgr3 <. D , <. E , d >. >. /\ ( <. D , C >. Cgr <. D , c >. /\ <. d , C >. Cgr <. d , c >. ) ) -> <. E , C >. Cgr <. E , c >. ) )
35 1 8 29 34 mp3and
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) ) ) -> <. E , C >. Cgr <. E , c >. )