Metamath Proof Explorer


Theorem btwnconn1lem5

Description: Lemma for btwnconn1 . Now, we introduce E , the intersection of C c and D d . We begin by showing that it is the midpoint of C and c . (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem5 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdECCgrEc

Proof

Step Hyp Ref Expression
1 simprrr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdEBtwnDd
2 simp11 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NN
3 simp22 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼ND𝔼N
4 simp33 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NE𝔼N
5 simp31 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼Nd𝔼N
6 cgr3rflx ND𝔼NE𝔼Nd𝔼NDEdCgr3DEd
7 2 3 4 5 6 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NDEdCgr3DEd
8 7 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdDEdCgr3DEd
9 simp2lr ABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBDcCgrCD
10 9 ad2antrl NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdDcCgrCD
11 simp23 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼Nc𝔼N
12 simp21 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NC𝔼N
13 cgrcomr ND𝔼Nc𝔼NC𝔼ND𝔼NDcCgrCDDcCgrDC
14 2 3 11 12 3 13 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NDcCgrCDDcCgrDC
15 cgrcom ND𝔼Nc𝔼ND𝔼NC𝔼NDcCgrDCDCCgrDc
16 2 3 11 3 12 15 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NDcCgrDCDCCgrDc
17 14 16 bitrd NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NDcCgrCDDCCgrDc
18 17 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdDcCgrCDDCCgrDc
19 10 18 mpbid NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdDCCgrDc
20 simp2rr ABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBCdCgrCD
21 20 ad2antrl NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCdCgrCD
22 2 12 5 12 3 21 cgrcomlrand NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDddCCgrDC
23 3simpa d𝔼Nb𝔼NE𝔼Nd𝔼Nb𝔼N
24 23 3anim3i NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NNA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼N
25 simpl ABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDB
26 btwnconn1lem4 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBdcCgrDC
27 24 25 26 syl2an NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDddcCgrDC
28 2 5 12 5 11 3 12 22 27 cgrtr3and NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDddCCgrdc
29 19 28 jca NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdDCCgrDcdCCgrdc
30 brifs2 ND𝔼NE𝔼Nd𝔼NC𝔼ND𝔼NE𝔼Nd𝔼Nc𝔼NDEdCInnerFiveSegDEdcEBtwnDdDEdCgr3DEdDCCgrDcdCCgrdc
31 ifscgr ND𝔼NE𝔼Nd𝔼NC𝔼ND𝔼NE𝔼Nd𝔼Nc𝔼NDEdCInnerFiveSegDEdcECCgrEc
32 30 31 sylbird ND𝔼NE𝔼Nd𝔼NC𝔼ND𝔼NE𝔼Nd𝔼Nc𝔼NEBtwnDdDEdCgr3DEdDCCgrDcdCCgrdcECCgrEc
33 2 3 4 5 12 3 4 5 11 32 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NEBtwnDdDEdCgr3DEdDCCgrDcdCCgrdcECCgrEc
34 33 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdEBtwnDdDEdCgr3DEdDCCgrDcdCCgrdcECCgrEc
35 1 8 29 34 mp3and NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdECCgrEc