Description: Lemma for btwnconn1 . Now, we introduce E , the intersection of C c and D d . We begin by showing that it is the midpoint of C and c . (Contributed by Scott Fenton, 8-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | btwnconn1lem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrr | |
|
2 | simp11 | |
|
3 | simp22 | |
|
4 | simp33 | |
|
5 | simp31 | |
|
6 | cgr3rflx | |
|
7 | 2 3 4 5 6 | syl13anc | |
8 | 7 | adantr | |
9 | simp2lr | |
|
10 | 9 | ad2antrl | |
11 | simp23 | |
|
12 | simp21 | |
|
13 | cgrcomr | |
|
14 | 2 3 11 12 3 13 | syl122anc | |
15 | cgrcom | |
|
16 | 2 3 11 3 12 15 | syl122anc | |
17 | 14 16 | bitrd | |
18 | 17 | adantr | |
19 | 10 18 | mpbid | |
20 | simp2rr | |
|
21 | 20 | ad2antrl | |
22 | 2 12 5 12 3 21 | cgrcomlrand | |
23 | 3simpa | |
|
24 | 23 | 3anim3i | |
25 | simpl | |
|
26 | btwnconn1lem4 | |
|
27 | 24 25 26 | syl2an | |
28 | 2 5 12 5 11 3 12 22 27 | cgrtr3and | |
29 | 19 28 | jca | |
30 | brifs2 | |
|
31 | ifscgr | |
|
32 | 30 31 | sylbird | |
33 | 2 3 4 5 12 3 4 5 11 32 | syl333anc | |
34 | 33 | adantr | |
35 | 1 8 29 34 | mp3and | |