Metamath Proof Explorer


Theorem btwnconn1lem5

Description: Lemma for btwnconn1 . Now, we introduce E , the intersection of C c and D d . We begin by showing that it is the midpoint of C and c . (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d E C Cgr E c

Proof

Step Hyp Ref Expression
1 simprrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d E Btwn D d
2 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N N
3 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N D 𝔼 N
4 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N E 𝔼 N
5 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N d 𝔼 N
6 cgr3rflx N D 𝔼 N E 𝔼 N d 𝔼 N D E d Cgr3 D E d
7 2 3 4 5 6 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N D E d Cgr3 D E d
8 7 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d D E d Cgr3 D E d
9 simp2lr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B D c Cgr C D
10 9 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d D c Cgr C D
11 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N c 𝔼 N
12 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N C 𝔼 N
13 cgrcomr N D 𝔼 N c 𝔼 N C 𝔼 N D 𝔼 N D c Cgr C D D c Cgr D C
14 2 3 11 12 3 13 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N D c Cgr C D D c Cgr D C
15 cgrcom N D 𝔼 N c 𝔼 N D 𝔼 N C 𝔼 N D c Cgr D C D C Cgr D c
16 2 3 11 3 12 15 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N D c Cgr D C D C Cgr D c
17 14 16 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N D c Cgr C D D C Cgr D c
18 17 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d D c Cgr C D D C Cgr D c
19 10 18 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d D C Cgr D c
20 simp2rr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C d Cgr C D
21 20 ad2antrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C d Cgr C D
22 2 12 5 12 3 21 cgrcomlrand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d d C Cgr D C
23 3simpa d 𝔼 N b 𝔼 N E 𝔼 N d 𝔼 N b 𝔼 N
24 23 3anim3i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N
25 simpl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B
26 btwnconn1lem4 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B d c Cgr D C
27 24 25 26 syl2an N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d d c Cgr D C
28 2 5 12 5 11 3 12 22 27 cgrtr3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d d C Cgr d c
29 19 28 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d D C Cgr D c d C Cgr d c
30 brifs2 N D 𝔼 N E 𝔼 N d 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N d 𝔼 N c 𝔼 N D E d C InnerFiveSeg D E d c E Btwn D d D E d Cgr3 D E d D C Cgr D c d C Cgr d c
31 ifscgr N D 𝔼 N E 𝔼 N d 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N d 𝔼 N c 𝔼 N D E d C InnerFiveSeg D E d c E C Cgr E c
32 30 31 sylbird N D 𝔼 N E 𝔼 N d 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N d 𝔼 N c 𝔼 N E Btwn D d D E d Cgr3 D E d D C Cgr D c d C Cgr d c E C Cgr E c
33 2 3 4 5 12 3 4 5 11 32 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N E Btwn D d D E d Cgr3 D E d D C Cgr D c d C Cgr d c E C Cgr E c
34 33 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d E Btwn D d D E d Cgr3 D E d D C Cgr D c d C Cgr d c E C Cgr E c
35 1 8 29 34 mp3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d E C Cgr E c