Description: Lemma for btwnconn1 . Next, we show that E is the midpoint of D and d . (Contributed by Scott Fenton, 8-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | btwnconn1lem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrl | |
|
2 | 1 1 | jca | |
3 | simp11 | |
|
4 | simp21 | |
|
5 | simp23 | |
|
6 | 3 4 5 | cgrrflxd | |
7 | simp33 | |
|
8 | 3 7 5 | cgrrflxd | |
9 | 6 8 | jca | |
10 | 9 | adantr | |
11 | simp31 | |
|
12 | simp22 | |
|
13 | simp2rr | |
|
14 | 13 | ad2antrl | |
15 | 3 4 11 4 12 14 | cgrcomand | |
16 | simp2lr | |
|
17 | 16 | ad2antrl | |
18 | 3 12 5 4 12 17 | cgrcomrand | |
19 | 3simpa | |
|
20 | 19 | 3anim3i | |
21 | simpl | |
|
22 | btwnconn1lem4 | |
|
23 | 20 21 22 | syl2an | |
24 | 3 12 5 11 5 12 4 18 23 | cgrtr3and | |
25 | 3 12 5 11 5 24 | cgrcomlrand | |
26 | 15 25 | jca | |
27 | brifs | |
|
28 | ifscgr | |
|
29 | 27 28 | sylbird | |
30 | 3 4 7 5 12 4 7 5 11 29 | syl333anc | |
31 | 30 | adantr | |
32 | 2 10 26 31 | mp3and | |