Description: Lemma for btwnconn1 . Assuming C =/= c , we now attempt to force D = d from here out via a series of congruences. (Contributed by Scott Fenton, 8-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | btwnconn1lem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1rl | |
|
2 | simp2rl | |
|
3 | 1 2 | jca | |
4 | 3 | adantl | |
5 | simp11 | |
|
6 | simp12 | |
|
7 | simp13 | |
|
8 | simp21 | |
|
9 | simp3l | |
|
10 | btwnexch3 | |
|
11 | 5 6 7 8 9 10 | syl122anc | |
12 | 11 | adantr | |
13 | 4 12 | mpd | |
14 | simp3lr | |
|
15 | 14 | adantl | |
16 | simp23 | |
|
17 | simp3r | |
|
18 | cgrcomlr | |
|
19 | 5 16 17 8 7 18 | syl122anc | |
20 | cgrcom | |
|
21 | 5 17 16 7 8 20 | syl122anc | |
22 | 19 21 | bitrd | |
23 | 22 | adantr | |
24 | 15 23 | mpbid | |
25 | 3simpa | |
|
26 | 25 | anim1i | |
27 | btwnconn1lem3 | |
|
28 | 26 27 | syl3anr1 | |
29 | simp22 | |
|
30 | simp2rr | |
|
31 | 30 | adantl | |
32 | simp2lr | |
|
33 | 32 | adantl | |
34 | 5 29 16 8 29 33 | cgrcomland | |
35 | 5 8 9 16 29 8 29 31 34 | cgrtr3and | |
36 | brcgr3 | |
|
37 | 5 7 8 9 17 16 29 36 | syl133anc | |
38 | 37 | adantr | |
39 | 24 28 35 38 | mpbir3and | |
40 | simpl | |
|
41 | simpr | |
|
42 | 40 41 41 | 3jca | |
43 | 42 | 3anim3i | |
44 | 26 | 3anim1i | |
45 | btwnconn1lem1 | |
|
46 | 43 44 45 | syl2an | |
47 | 5 8 16 | cgrrflx2d | |
48 | 47 | adantr | |
49 | 46 48 | jca | |
50 | 13 39 49 | 3jca | |
51 | simp1l2 | |
|
52 | 51 | adantl | |
53 | brofs2 | |
|
54 | 53 | anbi1d | |
55 | 5segofs | |
|
56 | 54 55 | sylbird | |
57 | 5 7 8 9 16 17 16 29 8 56 | syl333anc | |
58 | 57 | adantr | |
59 | 50 52 58 | mp2and | |