Metamath Proof Explorer


Theorem btwnconn1lem4

Description: Lemma for btwnconn1 . Assuming C =/= c , we now attempt to force D = d from here out via a series of congruences. (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem4 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B d c Cgr D C

Proof

Step Hyp Ref Expression
1 simp1rl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B Btwn A C
2 simp2rl A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C Btwn A d
3 1 2 jca A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B Btwn A C C Btwn A d
4 3 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B Btwn A C C Btwn A d
5 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N N
6 simp12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A 𝔼 N
7 simp13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N B 𝔼 N
8 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N C 𝔼 N
9 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N d 𝔼 N
10 btwnexch3 N A 𝔼 N B 𝔼 N C 𝔼 N d 𝔼 N B Btwn A C C Btwn A d C Btwn B d
11 5 6 7 8 9 10 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N B Btwn A C C Btwn A d C Btwn B d
12 11 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B Btwn A C C Btwn A d C Btwn B d
13 4 12 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C Btwn B d
14 simp3lr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B c b Cgr C B
15 14 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B c b Cgr C B
16 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N c 𝔼 N
17 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N b 𝔼 N
18 cgrcomlr N c 𝔼 N b 𝔼 N C 𝔼 N B 𝔼 N c b Cgr C B b c Cgr B C
19 5 16 17 8 7 18 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N c b Cgr C B b c Cgr B C
20 cgrcom N b 𝔼 N c 𝔼 N B 𝔼 N C 𝔼 N b c Cgr B C B C Cgr b c
21 5 17 16 7 8 20 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N b c Cgr B C B C Cgr b c
22 19 21 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N c b Cgr C B B C Cgr b c
23 22 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B c b Cgr C B B C Cgr b c
24 15 23 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B C Cgr b c
25 3simpa A B B C C c A B B C
26 25 anim1i A B B C C c B Btwn A C B Btwn A D A B B C B Btwn A C B Btwn A D
27 btwnconn1lem3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B d Cgr b D
28 26 27 syl3anr1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B d Cgr b D
29 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N D 𝔼 N
30 simp2rr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C d Cgr C D
31 30 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C d Cgr C D
32 simp2lr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B D c Cgr C D
33 32 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B D c Cgr C D
34 5 29 16 8 29 33 cgrcomland N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B c D Cgr C D
35 5 8 9 16 29 8 29 31 34 cgrtr3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C d Cgr c D
36 brcgr3 N B 𝔼 N C 𝔼 N d 𝔼 N b 𝔼 N c 𝔼 N D 𝔼 N B C d Cgr3 b c D B C Cgr b c B d Cgr b D C d Cgr c D
37 5 7 8 9 17 16 29 36 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N B C d Cgr3 b c D B C Cgr b c B d Cgr b D C d Cgr c D
38 37 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B C d Cgr3 b c D B C Cgr b c B d Cgr b D C d Cgr c D
39 24 28 35 38 mpbir3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B C d Cgr3 b c D
40 simpl d 𝔼 N b 𝔼 N d 𝔼 N
41 simpr d 𝔼 N b 𝔼 N b 𝔼 N
42 40 41 41 3jca d 𝔼 N b 𝔼 N d 𝔼 N b 𝔼 N b 𝔼 N
43 42 3anim3i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N b 𝔼 N
44 26 3anim1i A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B
45 btwnconn1lem1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N b 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B c Cgr b C
46 43 44 45 syl2an N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B c Cgr b C
47 5 8 16 cgrrflx2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N C c Cgr c C
48 47 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C c Cgr c C
49 46 48 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B c Cgr b C C c Cgr c C
50 13 39 49 3jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C Btwn B d B C d Cgr3 b c D B c Cgr b C C c Cgr c C
51 simp1l2 A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B C
52 51 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B B C
53 brofs2 N B 𝔼 N C 𝔼 N d 𝔼 N c 𝔼 N b 𝔼 N c 𝔼 N D 𝔼 N C 𝔼 N B C d c OuterFiveSeg b c D C C Btwn B d B C d Cgr3 b c D B c Cgr b C C c Cgr c C
54 53 anbi1d N B 𝔼 N C 𝔼 N d 𝔼 N c 𝔼 N b 𝔼 N c 𝔼 N D 𝔼 N C 𝔼 N B C d c OuterFiveSeg b c D C B C C Btwn B d B C d Cgr3 b c D B c Cgr b C C c Cgr c C B C
55 5segofs N B 𝔼 N C 𝔼 N d 𝔼 N c 𝔼 N b 𝔼 N c 𝔼 N D 𝔼 N C 𝔼 N B C d c OuterFiveSeg b c D C B C d c Cgr D C
56 54 55 sylbird N B 𝔼 N C 𝔼 N d 𝔼 N c 𝔼 N b 𝔼 N c 𝔼 N D 𝔼 N C 𝔼 N C Btwn B d B C d Cgr3 b c D B c Cgr b C C c Cgr c C B C d c Cgr D C
57 5 7 8 9 16 17 16 29 8 56 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N C Btwn B d B C d Cgr3 b c D B c Cgr b C C c Cgr c C B C d c Cgr D C
58 57 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B C Btwn B d B C d Cgr3 b c D B c Cgr b C C c Cgr c C B C d c Cgr D C
59 50 52 58 mp2and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B d c Cgr D C