Step |
Hyp |
Ref |
Expression |
1 |
|
btwnconn1lem8 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ) |
2 |
|
btwnconn1lem9 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ) |
3 |
|
btwnconn1lem10 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) |
4 |
1 2 3
|
3jca |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) ∧ 𝑑 = 𝐸 ) → ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) |
6 |
|
simpr3r |
⊢ ( ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) → 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) |
7 |
6
|
adantl |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) |
8 |
|
simpr2r |
⊢ ( ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) → 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) |
9 |
8
|
adantl |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) |
10 |
7 9
|
jca |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ) |
11 |
|
opeq2 |
⊢ ( 𝑑 = 𝐸 → 〈 𝐶 , 𝑑 〉 = 〈 𝐶 , 𝐸 〉 ) |
12 |
11
|
breq2d |
⊢ ( 𝑑 = 𝐸 → ( 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ) |
13 |
12
|
anbi2d |
⊢ ( 𝑑 = 𝐸 → ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ↔ ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ) ) |
14 |
|
opeq1 |
⊢ ( 𝑑 = 𝐸 → 〈 𝑑 , 𝑑 〉 = 〈 𝐸 , 𝑑 〉 ) |
15 |
14
|
breq2d |
⊢ ( 𝑑 = 𝐸 → ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ↔ 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ) ) |
16 |
|
opeq1 |
⊢ ( 𝑑 = 𝐸 → 〈 𝑑 , 𝐷 〉 = 〈 𝐸 , 𝐷 〉 ) |
17 |
16
|
breq2d |
⊢ ( 𝑑 = 𝐸 → ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ↔ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ) ) |
18 |
15 17
|
3anbi12d |
⊢ ( 𝑑 = 𝐸 → ( ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ↔ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ) |
19 |
13 18
|
anbi12d |
⊢ ( 𝑑 = 𝐸 → ( ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ↔ ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ) ) |
20 |
19
|
biimpar |
⊢ ( ( 𝑑 = 𝐸 ∧ ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ) → ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ) |
21 |
|
simpr1 |
⊢ ( ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) → 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ) |
22 |
|
simp11 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
23 |
|
simp33 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) |
24 |
|
simp31 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
25 |
|
simp2r1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) |
26 |
|
axcgrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 → 𝑅 = 𝑃 ) ) |
27 |
22 23 24 25 26
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 → 𝑅 = 𝑃 ) ) |
28 |
21 27
|
syl5 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) → 𝑅 = 𝑃 ) ) |
29 |
|
opeq1 |
⊢ ( 𝑅 = 𝑃 → 〈 𝑅 , 𝑄 〉 = 〈 𝑃 , 𝑄 〉 ) |
30 |
|
opeq1 |
⊢ ( 𝑅 = 𝑃 → 〈 𝑅 , 𝑃 〉 = 〈 𝑃 , 𝑃 〉 ) |
31 |
29 30
|
breq12d |
⊢ ( 𝑅 = 𝑃 → ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ↔ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) |
32 |
|
opeq2 |
⊢ ( 𝑅 = 𝑃 → 〈 𝐶 , 𝑅 〉 = 〈 𝐶 , 𝑃 〉 ) |
33 |
32
|
breq1d |
⊢ ( 𝑅 = 𝑃 → ( 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ) |
34 |
31 33
|
anbi12d |
⊢ ( 𝑅 = 𝑃 → ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ↔ ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ) ) |
35 |
30
|
breq1d |
⊢ ( 𝑅 = 𝑃 → ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ↔ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ) ) |
36 |
29
|
breq1d |
⊢ ( 𝑅 = 𝑃 → ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ↔ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ) ) |
37 |
35 36
|
3anbi12d |
⊢ ( 𝑅 = 𝑃 → ( ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ↔ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ) |
38 |
34 37
|
anbi12d |
⊢ ( 𝑅 = 𝑃 → ( ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ↔ ( ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ) ) |
39 |
38
|
biimpac |
⊢ ( ( ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ∧ 𝑅 = 𝑃 ) → ( ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ) |
40 |
|
simpll |
⊢ ( ( ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) → 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ) |
41 |
|
simp32 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |
42 |
|
axcgrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 → 𝑃 = 𝑄 ) ) |
43 |
22 24 41 24 42
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 → 𝑃 = 𝑄 ) ) |
44 |
40 43
|
syl5 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) → 𝑃 = 𝑄 ) ) |
45 |
|
simprlr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) ) → 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) |
46 |
|
simpr3 |
⊢ ( ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) → 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) |
47 |
|
simp2l2 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
48 |
|
axcgrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 → 𝑑 = 𝐷 ) ) |
49 |
22 25 47 24 48
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 → 𝑑 = 𝐷 ) ) |
50 |
46 49
|
syl5 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) → 𝑑 = 𝐷 ) ) |
51 |
50
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) ) → 𝑑 = 𝐷 ) |
52 |
51
|
opeq2d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) ) → 〈 𝐶 , 𝑑 〉 = 〈 𝐶 , 𝐷 〉 ) |
53 |
52
|
breq2d |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) |
54 |
|
simp2l1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
55 |
|
cgrcomlr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝐷 〉 ↔ 〈 𝑃 , 𝐶 〉 Cgr 〈 𝐷 , 𝐶 〉 ) ) |
56 |
22 54 24 54 47 55
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝐷 〉 ↔ 〈 𝑃 , 𝐶 〉 Cgr 〈 𝐷 , 𝐶 〉 ) ) |
57 |
|
cgrcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝐶 〉 Cgr 〈 𝐷 , 𝐶 〉 ↔ 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
58 |
22 24 54 47 54 57
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝐶 〉 Cgr 〈 𝐷 , 𝐶 〉 ↔ 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
59 |
56 58
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝐷 〉 ↔ 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
60 |
59
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝐷 〉 ↔ 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
61 |
53 60
|
bitrd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
62 |
45 61
|
mpbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) |
63 |
62
|
ex |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
64 |
|
opeq2 |
⊢ ( 𝑃 = 𝑄 → 〈 𝑃 , 𝑃 〉 = 〈 𝑃 , 𝑄 〉 ) |
65 |
64
|
breq1d |
⊢ ( 𝑃 = 𝑄 → ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ↔ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) |
66 |
65
|
anbi1d |
⊢ ( 𝑃 = 𝑄 → ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ↔ ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ) ) |
67 |
64
|
breq1d |
⊢ ( 𝑃 = 𝑄 → ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ↔ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ) ) |
68 |
64
|
breq2d |
⊢ ( 𝑃 = 𝑄 → ( 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ↔ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) |
69 |
67 68
|
3anbi23d |
⊢ ( 𝑃 = 𝑄 → ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ↔ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ) |
70 |
66 69
|
anbi12d |
⊢ ( 𝑃 = 𝑄 → ( ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) ↔ ( ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ) ) |
71 |
|
opeq1 |
⊢ ( 𝑃 = 𝑄 → 〈 𝑃 , 𝐶 〉 = 〈 𝑄 , 𝐶 〉 ) |
72 |
71
|
breq2d |
⊢ ( 𝑃 = 𝑄 → ( 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ↔ 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) |
73 |
70 72
|
imbi12d |
⊢ ( 𝑃 = 𝑄 → ( ( ( ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑃 〉 ) ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ↔ ( ( ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) ) |
74 |
63 73
|
syl5ibcom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑃 = 𝑄 → ( ( ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) ) |
75 |
74
|
com23 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) → ( 𝑃 = 𝑄 → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) ) |
76 |
44 75
|
mpdd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑃 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑃 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑃 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) |
77 |
39 76
|
syl5 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ∧ 𝑅 = 𝑃 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) |
78 |
77
|
expd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) → ( 𝑅 = 𝑃 → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) ) |
79 |
28 78
|
mpdd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝑑 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) |
80 |
20 79
|
syl5 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑑 = 𝐸 ∧ ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) ) ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) |
81 |
80
|
exp4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑑 = 𝐸 → ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) → ( ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) ) ) |
82 |
81
|
com23 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) → ( 𝑑 = 𝐸 → ( ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) ) ) |
83 |
10 82
|
syl5 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → ( 𝑑 = 𝐸 → ( ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) ) ) |
84 |
83
|
imp31 |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) ∧ 𝑑 = 𝐸 ) → ( ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝐸 , 𝐷 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) |
85 |
5 84
|
mpd |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) ∧ 𝑑 = 𝐸 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) |
86 |
|
simp2r3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) |
87 |
|
simprlr |
⊢ ( ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) → 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) |
88 |
87
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) |
89 |
22 86 47 25 88
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 𝐸 Btwn 〈 𝑑 , 𝐷 〉 ) |
90 |
|
cgrcomlr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ↔ 〈 𝑃 , 𝑅 〉 Cgr 〈 𝑑 , 𝐸 〉 ) ) |
91 |
22 23 24 86 25 90
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ↔ 〈 𝑃 , 𝑅 〉 Cgr 〈 𝑑 , 𝐸 〉 ) ) |
92 |
|
cgrcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝑅 〉 Cgr 〈 𝑑 , 𝐸 〉 ↔ 〈 𝑑 , 𝐸 〉 Cgr 〈 𝑃 , 𝑅 〉 ) ) |
93 |
22 24 23 25 86 92
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝑅 〉 Cgr 〈 𝑑 , 𝐸 〉 ↔ 〈 𝑑 , 𝐸 〉 Cgr 〈 𝑃 , 𝑅 〉 ) ) |
94 |
91 93
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ↔ 〈 𝑑 , 𝐸 〉 Cgr 〈 𝑃 , 𝑅 〉 ) ) |
95 |
94
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 〈 𝑅 , 𝑃 〉 Cgr 〈 𝐸 , 𝑑 〉 ↔ 〈 𝑑 , 𝐸 〉 Cgr 〈 𝑃 , 𝑅 〉 ) ) |
96 |
1 95
|
mpbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑑 , 𝐸 〉 Cgr 〈 𝑃 , 𝑅 〉 ) |
97 |
22 23 41 86 47 2
|
cgrcomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝐸 , 𝐷 〉 Cgr 〈 𝑅 , 𝑄 〉 ) |
98 |
|
brcgr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ↔ ( 〈 𝑑 , 𝐸 〉 Cgr 〈 𝑃 , 𝑅 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ∧ 〈 𝐸 , 𝐷 〉 Cgr 〈 𝑅 , 𝑄 〉 ) ) ) |
99 |
22 25 86 47 24 23 41 98
|
syl133anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ↔ ( 〈 𝑑 , 𝐸 〉 Cgr 〈 𝑃 , 𝑅 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ∧ 〈 𝐸 , 𝐷 〉 Cgr 〈 𝑅 , 𝑄 〉 ) ) ) |
100 |
99
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ↔ ( 〈 𝑑 , 𝐸 〉 Cgr 〈 𝑃 , 𝑅 〉 ∧ 〈 𝑑 , 𝐷 〉 Cgr 〈 𝑃 , 𝑄 〉 ∧ 〈 𝐸 , 𝐷 〉 Cgr 〈 𝑅 , 𝑄 〉 ) ) ) |
101 |
96 3 97 100
|
mpbir3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ) |
102 |
|
simpr1r |
⊢ ( ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) → 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) |
103 |
102
|
ad2antll |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) |
104 |
|
cgrcomlr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝑃 , 𝐶 〉 Cgr 〈 𝑑 , 𝐶 〉 ) ) |
105 |
22 54 24 54 25 104
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝑃 , 𝐶 〉 Cgr 〈 𝑑 , 𝐶 〉 ) ) |
106 |
|
cgrcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝐶 〉 Cgr 〈 𝑑 , 𝐶 〉 ↔ 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
107 |
22 24 54 25 54 106
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑃 , 𝐶 〉 Cgr 〈 𝑑 , 𝐶 〉 ↔ 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
108 |
105 107
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
109 |
108
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ↔ 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) ) |
110 |
103 109
|
mpbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ) |
111 |
8
|
ad2antll |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) |
112 |
|
cgrcomlr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ↔ 〈 𝑅 , 𝐶 〉 Cgr 〈 𝐸 , 𝐶 〉 ) ) |
113 |
22 54 23 54 86 112
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ↔ 〈 𝑅 , 𝐶 〉 Cgr 〈 𝐸 , 𝐶 〉 ) ) |
114 |
|
cgrcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑅 , 𝐶 〉 Cgr 〈 𝐸 , 𝐶 〉 ↔ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) |
115 |
22 23 54 86 54 114
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑅 , 𝐶 〉 Cgr 〈 𝐸 , 𝐶 〉 ↔ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) |
116 |
113 115
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ↔ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) |
117 |
116
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ↔ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) |
118 |
111 117
|
mpbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) |
119 |
110 118
|
jca |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) |
120 |
89 101 119
|
3jca |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → ( 𝐸 Btwn 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ∧ ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) ) |
121 |
120
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) ∧ 𝑑 ≠ 𝐸 ) → ( 𝐸 Btwn 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ∧ ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) ) |
122 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) ∧ 𝑑 ≠ 𝐸 ) → 𝑑 ≠ 𝐸 ) |
123 |
|
brofs2 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 〈 𝑑 , 𝐸 〉 , 〈 𝐷 , 𝐶 〉 〉 OuterFiveSeg 〈 〈 𝑃 , 𝑅 〉 , 〈 𝑄 , 𝐶 〉 〉 ↔ ( 𝐸 Btwn 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ∧ ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) ) ) |
124 |
123
|
anbi1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 〈 𝑑 , 𝐸 〉 , 〈 𝐷 , 𝐶 〉 〉 OuterFiveSeg 〈 〈 𝑃 , 𝑅 〉 , 〈 𝑄 , 𝐶 〉 〉 ∧ 𝑑 ≠ 𝐸 ) ↔ ( ( 𝐸 Btwn 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ∧ ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) ∧ 𝑑 ≠ 𝐸 ) ) ) |
125 |
|
5segofs |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 〈 𝑑 , 𝐸 〉 , 〈 𝐷 , 𝐶 〉 〉 OuterFiveSeg 〈 〈 𝑃 , 𝑅 〉 , 〈 𝑄 , 𝐶 〉 〉 ∧ 𝑑 ≠ 𝐸 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) |
126 |
124 125
|
sylbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐸 Btwn 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ∧ ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) ∧ 𝑑 ≠ 𝐸 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) |
127 |
22 25 86 47 54 24 23 41 54 126
|
syl333anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐸 Btwn 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ∧ ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) ∧ 𝑑 ≠ 𝐸 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) |
128 |
127
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) ∧ 𝑑 ≠ 𝐸 ) → ( ( ( 𝐸 Btwn 〈 𝑑 , 𝐷 〉 ∧ 〈 𝑑 , 〈 𝐸 , 𝐷 〉 〉 Cgr3 〈 𝑃 , 〈 𝑅 , 𝑄 〉 〉 ∧ ( 〈 𝑑 , 𝐶 〉 Cgr 〈 𝑃 , 𝐶 〉 ∧ 〈 𝐸 , 𝐶 〉 Cgr 〈 𝑅 , 𝐶 〉 ) ) ∧ 𝑑 ≠ 𝐸 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) ) |
129 |
121 122 128
|
mp2and |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) ∧ 𝑑 ≠ 𝐸 ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) |
130 |
85 129
|
pm2.61dane |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ∧ ( ( 𝐸 Btwn 〈 𝐶 , 𝑐 〉 ∧ 𝐸 Btwn 〈 𝐷 , 𝑑 〉 ) ∧ ( ( 𝐶 Btwn 〈 𝑐 , 𝑃 〉 ∧ 〈 𝐶 , 𝑃 〉 Cgr 〈 𝐶 , 𝑑 〉 ) ∧ ( 𝐶 Btwn 〈 𝑑 , 𝑅 〉 ∧ 〈 𝐶 , 𝑅 〉 Cgr 〈 𝐶 , 𝐸 〉 ) ∧ ( 𝑅 Btwn 〈 𝑃 , 𝑄 〉 ∧ 〈 𝑅 , 𝑄 〉 Cgr 〈 𝑅 , 𝑃 〉 ) ) ) ) ) → 〈 𝐷 , 𝐶 〉 Cgr 〈 𝑄 , 𝐶 〉 ) |