Step |
Hyp |
Ref |
Expression |
1 |
|
btwnconn1lem8 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. R , P >. Cgr <. E , d >. ) |
2 |
|
btwnconn1lem9 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. R , Q >. Cgr <. E , D >. ) |
3 |
|
btwnconn1lem10 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , D >. Cgr <. P , Q >. ) |
4 |
1 2 3
|
3jca |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) |
5 |
4
|
adantr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d = E ) -> ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) |
6 |
|
simpr3r |
|- ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> <. R , Q >. Cgr <. R , P >. ) |
7 |
6
|
adantl |
|- ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> <. R , Q >. Cgr <. R , P >. ) |
8 |
|
simpr2r |
|- ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> <. C , R >. Cgr <. C , E >. ) |
9 |
8
|
adantl |
|- ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> <. C , R >. Cgr <. C , E >. ) |
10 |
7 9
|
jca |
|- ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) ) |
11 |
|
opeq2 |
|- ( d = E -> <. C , d >. = <. C , E >. ) |
12 |
11
|
breq2d |
|- ( d = E -> ( <. C , R >. Cgr <. C , d >. <-> <. C , R >. Cgr <. C , E >. ) ) |
13 |
12
|
anbi2d |
|- ( d = E -> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) <-> ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) ) ) |
14 |
|
opeq1 |
|- ( d = E -> <. d , d >. = <. E , d >. ) |
15 |
14
|
breq2d |
|- ( d = E -> ( <. R , P >. Cgr <. d , d >. <-> <. R , P >. Cgr <. E , d >. ) ) |
16 |
|
opeq1 |
|- ( d = E -> <. d , D >. = <. E , D >. ) |
17 |
16
|
breq2d |
|- ( d = E -> ( <. R , Q >. Cgr <. d , D >. <-> <. R , Q >. Cgr <. E , D >. ) ) |
18 |
15 17
|
3anbi12d |
|- ( d = E -> ( ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) <-> ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) |
19 |
13 18
|
anbi12d |
|- ( d = E -> ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) <-> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) ) |
20 |
19
|
biimpar |
|- ( ( d = E /\ ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) -> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) |
21 |
|
simpr1 |
|- ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. R , P >. Cgr <. d , d >. ) |
22 |
|
simp11 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> N e. NN ) |
23 |
|
simp33 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> R e. ( EE ` N ) ) |
24 |
|
simp31 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) |
25 |
|
simp2r1 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> d e. ( EE ` N ) ) |
26 |
|
axcgrid |
|- ( ( N e. NN /\ ( R e. ( EE ` N ) /\ P e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. d , d >. -> R = P ) ) |
27 |
22 23 24 25 26
|
syl13anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. d , d >. -> R = P ) ) |
28 |
21 27
|
syl5 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> R = P ) ) |
29 |
|
opeq1 |
|- ( R = P -> <. R , Q >. = <. P , Q >. ) |
30 |
|
opeq1 |
|- ( R = P -> <. R , P >. = <. P , P >. ) |
31 |
29 30
|
breq12d |
|- ( R = P -> ( <. R , Q >. Cgr <. R , P >. <-> <. P , Q >. Cgr <. P , P >. ) ) |
32 |
|
opeq2 |
|- ( R = P -> <. C , R >. = <. C , P >. ) |
33 |
32
|
breq1d |
|- ( R = P -> ( <. C , R >. Cgr <. C , d >. <-> <. C , P >. Cgr <. C , d >. ) ) |
34 |
31 33
|
anbi12d |
|- ( R = P -> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) <-> ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) ) ) |
35 |
30
|
breq1d |
|- ( R = P -> ( <. R , P >. Cgr <. d , d >. <-> <. P , P >. Cgr <. d , d >. ) ) |
36 |
29
|
breq1d |
|- ( R = P -> ( <. R , Q >. Cgr <. d , D >. <-> <. P , Q >. Cgr <. d , D >. ) ) |
37 |
35 36
|
3anbi12d |
|- ( R = P -> ( ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) <-> ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) |
38 |
34 37
|
anbi12d |
|- ( R = P -> ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) <-> ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) ) |
39 |
38
|
biimpac |
|- ( ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) /\ R = P ) -> ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) |
40 |
|
simpll |
|- ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. P , Q >. Cgr <. P , P >. ) |
41 |
|
simp32 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) |
42 |
|
axcgrid |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( <. P , Q >. Cgr <. P , P >. -> P = Q ) ) |
43 |
22 24 41 24 42
|
syl13anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , Q >. Cgr <. P , P >. -> P = Q ) ) |
44 |
40 43
|
syl5 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> P = Q ) ) |
45 |
|
simprlr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> <. C , P >. Cgr <. C , d >. ) |
46 |
|
simpr3 |
|- ( ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) -> <. d , D >. Cgr <. P , P >. ) |
47 |
|
simp2l2 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
48 |
|
axcgrid |
|- ( ( N e. NN /\ ( d e. ( EE ` N ) /\ D e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( <. d , D >. Cgr <. P , P >. -> d = D ) ) |
49 |
22 25 47 24 48
|
syl13anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. d , D >. Cgr <. P , P >. -> d = D ) ) |
50 |
46 49
|
syl5 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) -> d = D ) ) |
51 |
50
|
imp |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> d = D ) |
52 |
51
|
opeq2d |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> <. C , d >. = <. C , D >. ) |
53 |
52
|
breq2d |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. C , P >. Cgr <. C , D >. ) ) |
54 |
|
simp2l1 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
55 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , D >. <-> <. P , C >. Cgr <. D , C >. ) ) |
56 |
22 54 24 54 47 55
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , D >. <-> <. P , C >. Cgr <. D , C >. ) ) |
57 |
|
cgrcom |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. P , C >. Cgr <. D , C >. <-> <. D , C >. Cgr <. P , C >. ) ) |
58 |
22 24 54 47 54 57
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , C >. Cgr <. D , C >. <-> <. D , C >. Cgr <. P , C >. ) ) |
59 |
56 58
|
bitrd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , D >. <-> <. D , C >. Cgr <. P , C >. ) ) |
60 |
59
|
adantr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> ( <. C , P >. Cgr <. C , D >. <-> <. D , C >. Cgr <. P , C >. ) ) |
61 |
53 60
|
bitrd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. D , C >. Cgr <. P , C >. ) ) |
62 |
45 61
|
mpbid |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> <. D , C >. Cgr <. P , C >. ) |
63 |
62
|
ex |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) -> <. D , C >. Cgr <. P , C >. ) ) |
64 |
|
opeq2 |
|- ( P = Q -> <. P , P >. = <. P , Q >. ) |
65 |
64
|
breq1d |
|- ( P = Q -> ( <. P , P >. Cgr <. P , P >. <-> <. P , Q >. Cgr <. P , P >. ) ) |
66 |
65
|
anbi1d |
|- ( P = Q -> ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) <-> ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) ) ) |
67 |
64
|
breq1d |
|- ( P = Q -> ( <. P , P >. Cgr <. d , D >. <-> <. P , Q >. Cgr <. d , D >. ) ) |
68 |
64
|
breq2d |
|- ( P = Q -> ( <. d , D >. Cgr <. P , P >. <-> <. d , D >. Cgr <. P , Q >. ) ) |
69 |
67 68
|
3anbi23d |
|- ( P = Q -> ( ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) <-> ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) |
70 |
66 69
|
anbi12d |
|- ( P = Q -> ( ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) <-> ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) ) |
71 |
|
opeq1 |
|- ( P = Q -> <. P , C >. = <. Q , C >. ) |
72 |
71
|
breq2d |
|- ( P = Q -> ( <. D , C >. Cgr <. P , C >. <-> <. D , C >. Cgr <. Q , C >. ) ) |
73 |
70 72
|
imbi12d |
|- ( P = Q -> ( ( ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) -> <. D , C >. Cgr <. P , C >. ) <-> ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. D , C >. Cgr <. Q , C >. ) ) ) |
74 |
63 73
|
syl5ibcom |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( P = Q -> ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. D , C >. Cgr <. Q , C >. ) ) ) |
75 |
74
|
com23 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> ( P = Q -> <. D , C >. Cgr <. Q , C >. ) ) ) |
76 |
44 75
|
mpdd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. D , C >. Cgr <. Q , C >. ) ) |
77 |
39 76
|
syl5 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) /\ R = P ) -> <. D , C >. Cgr <. Q , C >. ) ) |
78 |
77
|
expd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> ( R = P -> <. D , C >. Cgr <. Q , C >. ) ) ) |
79 |
28 78
|
mpdd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. D , C >. Cgr <. Q , C >. ) ) |
80 |
20 79
|
syl5 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( d = E /\ ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) -> <. D , C >. Cgr <. Q , C >. ) ) |
81 |
80
|
exp4d |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( d = E -> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) -> ( ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) -> <. D , C >. Cgr <. Q , C >. ) ) ) ) |
82 |
81
|
com23 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) -> ( d = E -> ( ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) -> <. D , C >. Cgr <. Q , C >. ) ) ) ) |
83 |
10 82
|
syl5 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> ( d = E -> ( ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) -> <. D , C >. Cgr <. Q , C >. ) ) ) ) |
84 |
83
|
imp31 |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d = E ) -> ( ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) -> <. D , C >. Cgr <. Q , C >. ) ) |
85 |
5 84
|
mpd |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d = E ) -> <. D , C >. Cgr <. Q , C >. ) |
86 |
|
simp2r3 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) |
87 |
|
simprlr |
|- ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> E Btwn <. D , d >. ) |
88 |
87
|
adantl |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> E Btwn <. D , d >. ) |
89 |
22 86 47 25 88
|
btwncomand |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> E Btwn <. d , D >. ) |
90 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( R e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. P , R >. Cgr <. d , E >. ) ) |
91 |
22 23 24 86 25 90
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. P , R >. Cgr <. d , E >. ) ) |
92 |
|
cgrcom |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. P , R >. Cgr <. d , E >. <-> <. d , E >. Cgr <. P , R >. ) ) |
93 |
22 24 23 25 86 92
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , R >. Cgr <. d , E >. <-> <. d , E >. Cgr <. P , R >. ) ) |
94 |
91 93
|
bitrd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. d , E >. Cgr <. P , R >. ) ) |
95 |
94
|
adantr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. d , E >. Cgr <. P , R >. ) ) |
96 |
1 95
|
mpbid |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , E >. Cgr <. P , R >. ) |
97 |
22 23 41 86 47 2
|
cgrcomand |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. E , D >. Cgr <. R , Q >. ) |
98 |
|
brcgr3 |
|- ( ( N e. NN /\ ( d e. ( EE ` N ) /\ E e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ R e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. <-> ( <. d , E >. Cgr <. P , R >. /\ <. d , D >. Cgr <. P , Q >. /\ <. E , D >. Cgr <. R , Q >. ) ) ) |
99 |
22 25 86 47 24 23 41 98
|
syl133anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. <-> ( <. d , E >. Cgr <. P , R >. /\ <. d , D >. Cgr <. P , Q >. /\ <. E , D >. Cgr <. R , Q >. ) ) ) |
100 |
99
|
adantr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. <-> ( <. d , E >. Cgr <. P , R >. /\ <. d , D >. Cgr <. P , Q >. /\ <. E , D >. Cgr <. R , Q >. ) ) ) |
101 |
96 3 97 100
|
mpbir3and |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. ) |
102 |
|
simpr1r |
|- ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> <. C , P >. Cgr <. C , d >. ) |
103 |
102
|
ad2antll |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. C , P >. Cgr <. C , d >. ) |
104 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. P , C >. Cgr <. d , C >. ) ) |
105 |
22 54 24 54 25 104
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. P , C >. Cgr <. d , C >. ) ) |
106 |
|
cgrcom |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. P , C >. Cgr <. d , C >. <-> <. d , C >. Cgr <. P , C >. ) ) |
107 |
22 24 54 25 54 106
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , C >. Cgr <. d , C >. <-> <. d , C >. Cgr <. P , C >. ) ) |
108 |
105 107
|
bitrd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. d , C >. Cgr <. P , C >. ) ) |
109 |
108
|
adantr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. d , C >. Cgr <. P , C >. ) ) |
110 |
103 109
|
mpbid |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , C >. Cgr <. P , C >. ) |
111 |
8
|
ad2antll |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. C , R >. Cgr <. C , E >. ) |
112 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. C , R >. Cgr <. C , E >. <-> <. R , C >. Cgr <. E , C >. ) ) |
113 |
22 54 23 54 86 112
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , R >. Cgr <. C , E >. <-> <. R , C >. Cgr <. E , C >. ) ) |
114 |
|
cgrcom |
|- ( ( N e. NN /\ ( R e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. R , C >. Cgr <. E , C >. <-> <. E , C >. Cgr <. R , C >. ) ) |
115 |
22 23 54 86 54 114
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , C >. Cgr <. E , C >. <-> <. E , C >. Cgr <. R , C >. ) ) |
116 |
113 115
|
bitrd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , R >. Cgr <. C , E >. <-> <. E , C >. Cgr <. R , C >. ) ) |
117 |
116
|
adantr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. C , R >. Cgr <. C , E >. <-> <. E , C >. Cgr <. R , C >. ) ) |
118 |
111 117
|
mpbid |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. E , C >. Cgr <. R , C >. ) |
119 |
110 118
|
jca |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) |
120 |
89 101 119
|
3jca |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) ) |
121 |
120
|
adantr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d =/= E ) -> ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) ) |
122 |
|
simpr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d =/= E ) -> d =/= E ) |
123 |
|
brofs2 |
|- ( ( ( N e. NN /\ d e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. <. d , E >. , <. D , C >. >. OuterFiveSeg <. <. P , R >. , <. Q , C >. >. <-> ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) ) ) |
124 |
123
|
anbi1d |
|- ( ( ( N e. NN /\ d e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. <. d , E >. , <. D , C >. >. OuterFiveSeg <. <. P , R >. , <. Q , C >. >. /\ d =/= E ) <-> ( ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) /\ d =/= E ) ) ) |
125 |
|
5segofs |
|- ( ( ( N e. NN /\ d e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. <. d , E >. , <. D , C >. >. OuterFiveSeg <. <. P , R >. , <. Q , C >. >. /\ d =/= E ) -> <. D , C >. Cgr <. Q , C >. ) ) |
126 |
124 125
|
sylbird |
|- ( ( ( N e. NN /\ d e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) /\ d =/= E ) -> <. D , C >. Cgr <. Q , C >. ) ) |
127 |
22 25 86 47 54 24 23 41 54 126
|
syl333anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) /\ d =/= E ) -> <. D , C >. Cgr <. Q , C >. ) ) |
128 |
127
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d =/= E ) -> ( ( ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) /\ d =/= E ) -> <. D , C >. Cgr <. Q , C >. ) ) |
129 |
121 122 128
|
mp2and |
|- ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d =/= E ) -> <. D , C >. Cgr <. Q , C >. ) |
130 |
85 129
|
pm2.61dane |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. D , C >. Cgr <. Q , C >. ) |