| Step | Hyp | Ref | Expression | 
						
							| 1 |  | btwnconn1lem8 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. R , P >. Cgr <. E , d >. ) | 
						
							| 2 |  | btwnconn1lem9 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. R , Q >. Cgr <. E , D >. ) | 
						
							| 3 |  | btwnconn1lem10 |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , D >. Cgr <. P , Q >. ) | 
						
							| 4 | 1 2 3 | 3jca |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d = E ) -> ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) | 
						
							| 6 |  | simpr3r |  |-  ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> <. R , Q >. Cgr <. R , P >. ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> <. R , Q >. Cgr <. R , P >. ) | 
						
							| 8 |  | simpr2r |  |-  ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> <. C , R >. Cgr <. C , E >. ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> <. C , R >. Cgr <. C , E >. ) | 
						
							| 10 | 7 9 | jca |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) ) | 
						
							| 11 |  | opeq2 |  |-  ( d = E -> <. C , d >. = <. C , E >. ) | 
						
							| 12 | 11 | breq2d |  |-  ( d = E -> ( <. C , R >. Cgr <. C , d >. <-> <. C , R >. Cgr <. C , E >. ) ) | 
						
							| 13 | 12 | anbi2d |  |-  ( d = E -> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) <-> ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) ) ) | 
						
							| 14 |  | opeq1 |  |-  ( d = E -> <. d , d >. = <. E , d >. ) | 
						
							| 15 | 14 | breq2d |  |-  ( d = E -> ( <. R , P >. Cgr <. d , d >. <-> <. R , P >. Cgr <. E , d >. ) ) | 
						
							| 16 |  | opeq1 |  |-  ( d = E -> <. d , D >. = <. E , D >. ) | 
						
							| 17 | 16 | breq2d |  |-  ( d = E -> ( <. R , Q >. Cgr <. d , D >. <-> <. R , Q >. Cgr <. E , D >. ) ) | 
						
							| 18 | 15 17 | 3anbi12d |  |-  ( d = E -> ( ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) <-> ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) | 
						
							| 19 | 13 18 | anbi12d |  |-  ( d = E -> ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) <-> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) ) | 
						
							| 20 | 19 | biimpar |  |-  ( ( d = E /\ ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) -> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) | 
						
							| 21 |  | simpr1 |  |-  ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. R , P >. Cgr <. d , d >. ) | 
						
							| 22 |  | simp11 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 23 |  | simp33 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> R e. ( EE ` N ) ) | 
						
							| 24 |  | simp31 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) | 
						
							| 25 |  | simp2r1 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> d e. ( EE ` N ) ) | 
						
							| 26 |  | axcgrid |  |-  ( ( N e. NN /\ ( R e. ( EE ` N ) /\ P e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. d , d >. -> R = P ) ) | 
						
							| 27 | 22 23 24 25 26 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. d , d >. -> R = P ) ) | 
						
							| 28 | 21 27 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> R = P ) ) | 
						
							| 29 |  | opeq1 |  |-  ( R = P -> <. R , Q >. = <. P , Q >. ) | 
						
							| 30 |  | opeq1 |  |-  ( R = P -> <. R , P >. = <. P , P >. ) | 
						
							| 31 | 29 30 | breq12d |  |-  ( R = P -> ( <. R , Q >. Cgr <. R , P >. <-> <. P , Q >. Cgr <. P , P >. ) ) | 
						
							| 32 |  | opeq2 |  |-  ( R = P -> <. C , R >. = <. C , P >. ) | 
						
							| 33 | 32 | breq1d |  |-  ( R = P -> ( <. C , R >. Cgr <. C , d >. <-> <. C , P >. Cgr <. C , d >. ) ) | 
						
							| 34 | 31 33 | anbi12d |  |-  ( R = P -> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) <-> ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) ) ) | 
						
							| 35 | 30 | breq1d |  |-  ( R = P -> ( <. R , P >. Cgr <. d , d >. <-> <. P , P >. Cgr <. d , d >. ) ) | 
						
							| 36 | 29 | breq1d |  |-  ( R = P -> ( <. R , Q >. Cgr <. d , D >. <-> <. P , Q >. Cgr <. d , D >. ) ) | 
						
							| 37 | 35 36 | 3anbi12d |  |-  ( R = P -> ( ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) <-> ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) | 
						
							| 38 | 34 37 | anbi12d |  |-  ( R = P -> ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) <-> ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) ) | 
						
							| 39 | 38 | biimpac |  |-  ( ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) /\ R = P ) -> ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) | 
						
							| 40 |  | simpll |  |-  ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. P , Q >. Cgr <. P , P >. ) | 
						
							| 41 |  | simp32 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) | 
						
							| 42 |  | axcgrid |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( <. P , Q >. Cgr <. P , P >. -> P = Q ) ) | 
						
							| 43 | 22 24 41 24 42 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , Q >. Cgr <. P , P >. -> P = Q ) ) | 
						
							| 44 | 40 43 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> P = Q ) ) | 
						
							| 45 |  | simprlr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> <. C , P >. Cgr <. C , d >. ) | 
						
							| 46 |  | simpr3 |  |-  ( ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) -> <. d , D >. Cgr <. P , P >. ) | 
						
							| 47 |  | simp2l2 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 48 |  | axcgrid |  |-  ( ( N e. NN /\ ( d e. ( EE ` N ) /\ D e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( <. d , D >. Cgr <. P , P >. -> d = D ) ) | 
						
							| 49 | 22 25 47 24 48 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. d , D >. Cgr <. P , P >. -> d = D ) ) | 
						
							| 50 | 46 49 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) -> d = D ) ) | 
						
							| 51 | 50 | imp |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> d = D ) | 
						
							| 52 | 51 | opeq2d |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> <. C , d >. = <. C , D >. ) | 
						
							| 53 | 52 | breq2d |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. C , P >. Cgr <. C , D >. ) ) | 
						
							| 54 |  | simp2l1 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 55 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , D >. <-> <. P , C >. Cgr <. D , C >. ) ) | 
						
							| 56 | 22 54 24 54 47 55 | syl122anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , D >. <-> <. P , C >. Cgr <. D , C >. ) ) | 
						
							| 57 |  | cgrcom |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. P , C >. Cgr <. D , C >. <-> <. D , C >. Cgr <. P , C >. ) ) | 
						
							| 58 | 22 24 54 47 54 57 | syl122anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , C >. Cgr <. D , C >. <-> <. D , C >. Cgr <. P , C >. ) ) | 
						
							| 59 | 56 58 | bitrd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , D >. <-> <. D , C >. Cgr <. P , C >. ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> ( <. C , P >. Cgr <. C , D >. <-> <. D , C >. Cgr <. P , C >. ) ) | 
						
							| 61 | 53 60 | bitrd |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. D , C >. Cgr <. P , C >. ) ) | 
						
							| 62 | 45 61 | mpbid |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) ) -> <. D , C >. Cgr <. P , C >. ) | 
						
							| 63 | 62 | ex |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) -> <. D , C >. Cgr <. P , C >. ) ) | 
						
							| 64 |  | opeq2 |  |-  ( P = Q -> <. P , P >. = <. P , Q >. ) | 
						
							| 65 | 64 | breq1d |  |-  ( P = Q -> ( <. P , P >. Cgr <. P , P >. <-> <. P , Q >. Cgr <. P , P >. ) ) | 
						
							| 66 | 65 | anbi1d |  |-  ( P = Q -> ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) <-> ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) ) ) | 
						
							| 67 | 64 | breq1d |  |-  ( P = Q -> ( <. P , P >. Cgr <. d , D >. <-> <. P , Q >. Cgr <. d , D >. ) ) | 
						
							| 68 | 64 | breq2d |  |-  ( P = Q -> ( <. d , D >. Cgr <. P , P >. <-> <. d , D >. Cgr <. P , Q >. ) ) | 
						
							| 69 | 67 68 | 3anbi23d |  |-  ( P = Q -> ( ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) <-> ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) | 
						
							| 70 | 66 69 | anbi12d |  |-  ( P = Q -> ( ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) <-> ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) ) | 
						
							| 71 |  | opeq1 |  |-  ( P = Q -> <. P , C >. = <. Q , C >. ) | 
						
							| 72 | 71 | breq2d |  |-  ( P = Q -> ( <. D , C >. Cgr <. P , C >. <-> <. D , C >. Cgr <. Q , C >. ) ) | 
						
							| 73 | 70 72 | imbi12d |  |-  ( P = Q -> ( ( ( ( <. P , P >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , P >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , P >. ) ) -> <. D , C >. Cgr <. P , C >. ) <-> ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. D , C >. Cgr <. Q , C >. ) ) ) | 
						
							| 74 | 63 73 | syl5ibcom |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( P = Q -> ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. D , C >. Cgr <. Q , C >. ) ) ) | 
						
							| 75 | 74 | com23 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> ( P = Q -> <. D , C >. Cgr <. Q , C >. ) ) ) | 
						
							| 76 | 44 75 | mpdd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. P , Q >. Cgr <. P , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( <. P , P >. Cgr <. d , d >. /\ <. P , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. D , C >. Cgr <. Q , C >. ) ) | 
						
							| 77 | 39 76 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) /\ R = P ) -> <. D , C >. Cgr <. Q , C >. ) ) | 
						
							| 78 | 77 | expd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> ( R = P -> <. D , C >. Cgr <. Q , C >. ) ) ) | 
						
							| 79 | 28 78 | mpdd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , d >. ) /\ ( <. R , P >. Cgr <. d , d >. /\ <. R , Q >. Cgr <. d , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) -> <. D , C >. Cgr <. Q , C >. ) ) | 
						
							| 80 | 20 79 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( d = E /\ ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) ) ) -> <. D , C >. Cgr <. Q , C >. ) ) | 
						
							| 81 | 80 | exp4d |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( d = E -> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) -> ( ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) -> <. D , C >. Cgr <. Q , C >. ) ) ) ) | 
						
							| 82 | 81 | com23 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( <. R , Q >. Cgr <. R , P >. /\ <. C , R >. Cgr <. C , E >. ) -> ( d = E -> ( ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) -> <. D , C >. Cgr <. Q , C >. ) ) ) ) | 
						
							| 83 | 10 82 | syl5 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> ( d = E -> ( ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) -> <. D , C >. Cgr <. Q , C >. ) ) ) ) | 
						
							| 84 | 83 | imp31 |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d = E ) -> ( ( <. R , P >. Cgr <. E , d >. /\ <. R , Q >. Cgr <. E , D >. /\ <. d , D >. Cgr <. P , Q >. ) -> <. D , C >. Cgr <. Q , C >. ) ) | 
						
							| 85 | 5 84 | mpd |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d = E ) -> <. D , C >. Cgr <. Q , C >. ) | 
						
							| 86 |  | simp2r3 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) | 
						
							| 87 |  | simprlr |  |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> E Btwn <. D , d >. ) | 
						
							| 88 | 87 | adantl |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> E Btwn <. D , d >. ) | 
						
							| 89 | 22 86 47 25 88 | btwncomand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> E Btwn <. d , D >. ) | 
						
							| 90 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( R e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. P , R >. Cgr <. d , E >. ) ) | 
						
							| 91 | 22 23 24 86 25 90 | syl122anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. P , R >. Cgr <. d , E >. ) ) | 
						
							| 92 |  | cgrcom |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. P , R >. Cgr <. d , E >. <-> <. d , E >. Cgr <. P , R >. ) ) | 
						
							| 93 | 22 24 23 25 86 92 | syl122anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , R >. Cgr <. d , E >. <-> <. d , E >. Cgr <. P , R >. ) ) | 
						
							| 94 | 91 93 | bitrd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. d , E >. Cgr <. P , R >. ) ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. d , E >. Cgr <. P , R >. ) ) | 
						
							| 96 | 1 95 | mpbid |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , E >. Cgr <. P , R >. ) | 
						
							| 97 | 22 23 41 86 47 2 | cgrcomand |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. E , D >. Cgr <. R , Q >. ) | 
						
							| 98 |  | brcgr3 |  |-  ( ( N e. NN /\ ( d e. ( EE ` N ) /\ E e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ R e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. <-> ( <. d , E >. Cgr <. P , R >. /\ <. d , D >. Cgr <. P , Q >. /\ <. E , D >. Cgr <. R , Q >. ) ) ) | 
						
							| 99 | 22 25 86 47 24 23 41 98 | syl133anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. <-> ( <. d , E >. Cgr <. P , R >. /\ <. d , D >. Cgr <. P , Q >. /\ <. E , D >. Cgr <. R , Q >. ) ) ) | 
						
							| 100 | 99 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. <-> ( <. d , E >. Cgr <. P , R >. /\ <. d , D >. Cgr <. P , Q >. /\ <. E , D >. Cgr <. R , Q >. ) ) ) | 
						
							| 101 | 96 3 97 100 | mpbir3and |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. ) | 
						
							| 102 |  | simpr1r |  |-  ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> <. C , P >. Cgr <. C , d >. ) | 
						
							| 103 | 102 | ad2antll |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. C , P >. Cgr <. C , d >. ) | 
						
							| 104 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. P , C >. Cgr <. d , C >. ) ) | 
						
							| 105 | 22 54 24 54 25 104 | syl122anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. P , C >. Cgr <. d , C >. ) ) | 
						
							| 106 |  | cgrcom |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. P , C >. Cgr <. d , C >. <-> <. d , C >. Cgr <. P , C >. ) ) | 
						
							| 107 | 22 24 54 25 54 106 | syl122anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , C >. Cgr <. d , C >. <-> <. d , C >. Cgr <. P , C >. ) ) | 
						
							| 108 | 105 107 | bitrd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. d , C >. Cgr <. P , C >. ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. C , P >. Cgr <. C , d >. <-> <. d , C >. Cgr <. P , C >. ) ) | 
						
							| 110 | 103 109 | mpbid |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , C >. Cgr <. P , C >. ) | 
						
							| 111 | 8 | ad2antll |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. C , R >. Cgr <. C , E >. ) | 
						
							| 112 |  | cgrcomlr |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. C , R >. Cgr <. C , E >. <-> <. R , C >. Cgr <. E , C >. ) ) | 
						
							| 113 | 22 54 23 54 86 112 | syl122anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , R >. Cgr <. C , E >. <-> <. R , C >. Cgr <. E , C >. ) ) | 
						
							| 114 |  | cgrcom |  |-  ( ( N e. NN /\ ( R e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. R , C >. Cgr <. E , C >. <-> <. E , C >. Cgr <. R , C >. ) ) | 
						
							| 115 | 22 23 54 86 54 114 | syl122anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , C >. Cgr <. E , C >. <-> <. E , C >. Cgr <. R , C >. ) ) | 
						
							| 116 | 113 115 | bitrd |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. C , R >. Cgr <. C , E >. <-> <. E , C >. Cgr <. R , C >. ) ) | 
						
							| 117 | 116 | adantr |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. C , R >. Cgr <. C , E >. <-> <. E , C >. Cgr <. R , C >. ) ) | 
						
							| 118 | 111 117 | mpbid |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. E , C >. Cgr <. R , C >. ) | 
						
							| 119 | 110 118 | jca |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) | 
						
							| 120 | 89 101 119 | 3jca |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) ) | 
						
							| 121 | 120 | adantr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d =/= E ) -> ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) ) | 
						
							| 122 |  | simpr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d =/= E ) -> d =/= E ) | 
						
							| 123 |  | brofs2 |  |-  ( ( ( N e. NN /\ d e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. <. d , E >. , <. D , C >. >. OuterFiveSeg <. <. P , R >. , <. Q , C >. >. <-> ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) ) ) | 
						
							| 124 | 123 | anbi1d |  |-  ( ( ( N e. NN /\ d e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. <. d , E >. , <. D , C >. >. OuterFiveSeg <. <. P , R >. , <. Q , C >. >. /\ d =/= E ) <-> ( ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) /\ d =/= E ) ) ) | 
						
							| 125 |  | 5segofs |  |-  ( ( ( N e. NN /\ d e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( <. <. d , E >. , <. D , C >. >. OuterFiveSeg <. <. P , R >. , <. Q , C >. >. /\ d =/= E ) -> <. D , C >. Cgr <. Q , C >. ) ) | 
						
							| 126 | 124 125 | sylbird |  |-  ( ( ( N e. NN /\ d e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) /\ d =/= E ) -> <. D , C >. Cgr <. Q , C >. ) ) | 
						
							| 127 | 22 25 86 47 54 24 23 41 54 126 | syl333anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( ( ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) /\ d =/= E ) -> <. D , C >. Cgr <. Q , C >. ) ) | 
						
							| 128 | 127 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d =/= E ) -> ( ( ( E Btwn <. d , D >. /\ <. d , <. E , D >. >. Cgr3 <. P , <. R , Q >. >. /\ ( <. d , C >. Cgr <. P , C >. /\ <. E , C >. Cgr <. R , C >. ) ) /\ d =/= E ) -> <. D , C >. Cgr <. Q , C >. ) ) | 
						
							| 129 | 121 122 128 | mp2and |  |-  ( ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) /\ d =/= E ) -> <. D , C >. Cgr <. Q , C >. ) | 
						
							| 130 | 85 129 | pm2.61dane |  |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. D , C >. Cgr <. Q , C >. ) |