Metamath Proof Explorer


Theorem btwnconn1lem11

Description: Lemma for btwnconn1 . Now, we establish that D and Q are equidistant from C . (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem11 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPDCCgrQC

Proof

Step Hyp Ref Expression
1 btwnconn1lem8 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPRPCgrEd
2 btwnconn1lem9 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPRQCgrED
3 btwnconn1lem10 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPdDCgrPQ
4 1 2 3 3jca NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPRPCgrEdRQCgrEDdDCgrPQ
5 4 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPd=ERPCgrEdRQCgrEDdDCgrPQ
6 simpr3r EBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPRQCgrRP
7 6 adantl ABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPRQCgrRP
8 simpr2r EBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPCRCgrCE
9 8 adantl ABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPCRCgrCE
10 7 9 jca ABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPRQCgrRPCRCgrCE
11 opeq2 d=ECd=CE
12 11 breq2d d=ECRCgrCdCRCgrCE
13 12 anbi2d d=ERQCgrRPCRCgrCdRQCgrRPCRCgrCE
14 opeq1 d=Edd=Ed
15 14 breq2d d=ERPCgrddRPCgrEd
16 opeq1 d=EdD=ED
17 16 breq2d d=ERQCgrdDRQCgrED
18 15 17 3anbi12d d=ERPCgrddRQCgrdDdDCgrPQRPCgrEdRQCgrEDdDCgrPQ
19 13 18 anbi12d d=ERQCgrRPCRCgrCdRPCgrddRQCgrdDdDCgrPQRQCgrRPCRCgrCERPCgrEdRQCgrEDdDCgrPQ
20 19 biimpar d=ERQCgrRPCRCgrCERPCgrEdRQCgrEDdDCgrPQRQCgrRPCRCgrCdRPCgrddRQCgrdDdDCgrPQ
21 simpr1 RQCgrRPCRCgrCdRPCgrddRQCgrdDdDCgrPQRPCgrdd
22 simp11 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NN
23 simp33 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NR𝔼N
24 simp31 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NP𝔼N
25 simp2r1 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼Nd𝔼N
26 axcgrid NR𝔼NP𝔼Nd𝔼NRPCgrddR=P
27 22 23 24 25 26 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NRPCgrddR=P
28 21 27 syl5 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NRQCgrRPCRCgrCdRPCgrddRQCgrdDdDCgrPQR=P
29 opeq1 R=PRQ=PQ
30 opeq1 R=PRP=PP
31 29 30 breq12d R=PRQCgrRPPQCgrPP
32 opeq2 R=PCR=CP
33 32 breq1d R=PCRCgrCdCPCgrCd
34 31 33 anbi12d R=PRQCgrRPCRCgrCdPQCgrPPCPCgrCd
35 30 breq1d R=PRPCgrddPPCgrdd
36 29 breq1d R=PRQCgrdDPQCgrdD
37 35 36 3anbi12d R=PRPCgrddRQCgrdDdDCgrPQPPCgrddPQCgrdDdDCgrPQ
38 34 37 anbi12d R=PRQCgrRPCRCgrCdRPCgrddRQCgrdDdDCgrPQPQCgrPPCPCgrCdPPCgrddPQCgrdDdDCgrPQ
39 38 biimpac RQCgrRPCRCgrCdRPCgrddRQCgrdDdDCgrPQR=PPQCgrPPCPCgrCdPPCgrddPQCgrdDdDCgrPQ
40 simpll PQCgrPPCPCgrCdPPCgrddPQCgrdDdDCgrPQPQCgrPP
41 simp32 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NQ𝔼N
42 axcgrid NP𝔼NQ𝔼NP𝔼NPQCgrPPP=Q
43 22 24 41 24 42 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPQCgrPPP=Q
44 40 43 syl5 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPQCgrPPCPCgrCdPPCgrddPQCgrdDdDCgrPQP=Q
45 simprlr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPCPCgrCd
46 simpr3 PPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPdDCgrPP
47 simp2l2 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼ND𝔼N
48 axcgrid Nd𝔼ND𝔼NP𝔼NdDCgrPPd=D
49 22 25 47 24 48 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NdDCgrPPd=D
50 46 49 syl5 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPd=D
51 50 imp NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPd=D
52 51 opeq2d NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPCd=CD
53 52 breq2d NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPCPCgrCdCPCgrCD
54 simp2l1 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NC𝔼N
55 cgrcomlr NC𝔼NP𝔼NC𝔼ND𝔼NCPCgrCDPCCgrDC
56 22 54 24 54 47 55 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NCPCgrCDPCCgrDC
57 cgrcom NP𝔼NC𝔼ND𝔼NC𝔼NPCCgrDCDCCgrPC
58 22 24 54 47 54 57 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPCCgrDCDCCgrPC
59 56 58 bitrd NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NCPCgrCDDCCgrPC
60 59 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPCPCgrCDDCCgrPC
61 53 60 bitrd NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPCPCgrCdDCCgrPC
62 45 61 mpbid NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPDCCgrPC
63 62 ex NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPDCCgrPC
64 opeq2 P=QPP=PQ
65 64 breq1d P=QPPCgrPPPQCgrPP
66 65 anbi1d P=QPPCgrPPCPCgrCdPQCgrPPCPCgrCd
67 64 breq1d P=QPPCgrdDPQCgrdD
68 64 breq2d P=QdDCgrPPdDCgrPQ
69 67 68 3anbi23d P=QPPCgrddPPCgrdDdDCgrPPPPCgrddPQCgrdDdDCgrPQ
70 66 69 anbi12d P=QPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPPQCgrPPCPCgrCdPPCgrddPQCgrdDdDCgrPQ
71 opeq1 P=QPC=QC
72 71 breq2d P=QDCCgrPCDCCgrQC
73 70 72 imbi12d P=QPPCgrPPCPCgrCdPPCgrddPPCgrdDdDCgrPPDCCgrPCPQCgrPPCPCgrCdPPCgrddPQCgrdDdDCgrPQDCCgrQC
74 63 73 syl5ibcom NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NP=QPQCgrPPCPCgrCdPPCgrddPQCgrdDdDCgrPQDCCgrQC
75 74 com23 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPQCgrPPCPCgrCdPPCgrddPQCgrdDdDCgrPQP=QDCCgrQC
76 44 75 mpdd NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPQCgrPPCPCgrCdPPCgrddPQCgrdDdDCgrPQDCCgrQC
77 39 76 syl5 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NRQCgrRPCRCgrCdRPCgrddRQCgrdDdDCgrPQR=PDCCgrQC
78 77 expd NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NRQCgrRPCRCgrCdRPCgrddRQCgrdDdDCgrPQR=PDCCgrQC
79 28 78 mpdd NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NRQCgrRPCRCgrCdRPCgrddRQCgrdDdDCgrPQDCCgrQC
80 20 79 syl5 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼Nd=ERQCgrRPCRCgrCERPCgrEdRQCgrEDdDCgrPQDCCgrQC
81 80 exp4d NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼Nd=ERQCgrRPCRCgrCERPCgrEdRQCgrEDdDCgrPQDCCgrQC
82 81 com23 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NRQCgrRPCRCgrCEd=ERPCgrEdRQCgrEDdDCgrPQDCCgrQC
83 10 82 syl5 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPd=ERPCgrEdRQCgrEDdDCgrPQDCCgrQC
84 83 imp31 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPd=ERPCgrEdRQCgrEDdDCgrPQDCCgrQC
85 5 84 mpd NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPd=EDCCgrQC
86 simp2r3 NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NE𝔼N
87 simprlr ABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPEBtwnDd
88 87 adantl NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPEBtwnDd
89 22 86 47 25 88 btwncomand NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPEBtwndD
90 cgrcomlr NR𝔼NP𝔼NE𝔼Nd𝔼NRPCgrEdPRCgrdE
91 22 23 24 86 25 90 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NRPCgrEdPRCgrdE
92 cgrcom NP𝔼NR𝔼Nd𝔼NE𝔼NPRCgrdEdECgrPR
93 22 24 23 25 86 92 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPRCgrdEdECgrPR
94 91 93 bitrd NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NRPCgrEddECgrPR
95 94 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPRPCgrEddECgrPR
96 1 95 mpbid NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPdECgrPR
97 22 23 41 86 47 2 cgrcomand NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPEDCgrRQ
98 brcgr3 Nd𝔼NE𝔼ND𝔼NP𝔼NR𝔼NQ𝔼NdEDCgr3PRQdECgrPRdDCgrPQEDCgrRQ
99 22 25 86 47 24 23 41 98 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NdEDCgr3PRQdECgrPRdDCgrPQEDCgrRQ
100 99 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPdEDCgr3PRQdECgrPRdDCgrPQEDCgrRQ
101 96 3 97 100 mpbir3and NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPdEDCgr3PRQ
102 simpr1r EBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPCPCgrCd
103 102 ad2antll NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPCPCgrCd
104 cgrcomlr NC𝔼NP𝔼NC𝔼Nd𝔼NCPCgrCdPCCgrdC
105 22 54 24 54 25 104 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NCPCgrCdPCCgrdC
106 cgrcom NP𝔼NC𝔼Nd𝔼NC𝔼NPCCgrdCdCCgrPC
107 22 24 54 25 54 106 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NPCCgrdCdCCgrPC
108 105 107 bitrd NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NCPCgrCddCCgrPC
109 108 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPCPCgrCddCCgrPC
110 103 109 mpbid NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPdCCgrPC
111 8 ad2antll NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPCRCgrCE
112 cgrcomlr NC𝔼NR𝔼NC𝔼NE𝔼NCRCgrCERCCgrEC
113 22 54 23 54 86 112 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NCRCgrCERCCgrEC
114 cgrcom NR𝔼NC𝔼NE𝔼NC𝔼NRCCgrECECCgrRC
115 22 23 54 86 54 114 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NRCCgrECECCgrRC
116 113 115 bitrd NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NCRCgrCEECCgrRC
117 116 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPCRCgrCEECCgrRC
118 111 117 mpbid NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPECCgrRC
119 110 118 jca NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPdCCgrPCECCgrRC
120 89 101 119 3jca NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPEBtwndDdEDCgr3PRQdCCgrPCECCgrRC
121 120 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPdEEBtwndDdEDCgr3PRQdCCgrPCECCgrRC
122 simpr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPdEdE
123 brofs2 Nd𝔼NE𝔼ND𝔼NC𝔼NP𝔼NR𝔼NQ𝔼NC𝔼NdEDCOuterFiveSegPRQCEBtwndDdEDCgr3PRQdCCgrPCECCgrRC
124 123 anbi1d Nd𝔼NE𝔼ND𝔼NC𝔼NP𝔼NR𝔼NQ𝔼NC𝔼NdEDCOuterFiveSegPRQCdEEBtwndDdEDCgr3PRQdCCgrPCECCgrRCdE
125 5segofs Nd𝔼NE𝔼ND𝔼NC𝔼NP𝔼NR𝔼NQ𝔼NC𝔼NdEDCOuterFiveSegPRQCdEDCCgrQC
126 124 125 sylbird Nd𝔼NE𝔼ND𝔼NC𝔼NP𝔼NR𝔼NQ𝔼NC𝔼NEBtwndDdEDCgr3PRQdCCgrPCECCgrRCdEDCCgrQC
127 22 25 86 47 54 24 23 41 54 126 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NEBtwndDdEDCgr3PRQdCCgrPCECCgrRCdEDCCgrQC
128 127 ad2antrr NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPdEEBtwndDdEDCgr3PRQdCCgrPCECCgrRCdEDCCgrQC
129 121 122 128 mp2and NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPdEDCCgrQC
130 85 129 pm2.61dane NA𝔼NB𝔼NC𝔼ND𝔼Nc𝔼Nd𝔼Nb𝔼NE𝔼NP𝔼NQ𝔼NR𝔼NABBCCcBBtwnACBBtwnADDBtwnAcDcCgrCDCBtwnAdCdCgrCDcBtwnAbcbCgrCBdBtwnAbdbCgrDBEBtwnCcEBtwnDdCBtwncPCPCgrCdCBtwndRCRCgrCERBtwnPQRQCgrRPDCCgrQC