Metamath Proof Explorer


Theorem btwnconn1lem10

Description: Lemma for btwnconn1 . Now we establish a congruence that will give us D = d when we compute P = Q later on. (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem10 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d D Cgr P Q

Proof

Step Hyp Ref Expression
1 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N N
2 simp2r1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N d 𝔼 N
3 simp2r3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N E 𝔼 N
4 simp2l2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N D 𝔼 N
5 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P 𝔼 N
6 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R 𝔼 N
7 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N Q 𝔼 N
8 simprlr A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn D d
9 8 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn D d
10 1 3 4 2 9 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E Btwn d D
11 simpr3l E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Btwn P Q
12 11 ad2antll N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Btwn P Q
13 btwnconn1lem8 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R P Cgr E d
14 cgrcomlr N R 𝔼 N P 𝔼 N E 𝔼 N d 𝔼 N R P Cgr E d P R Cgr d E
15 1 6 5 3 2 14 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R P Cgr E d P R Cgr d E
16 cgrcom N P 𝔼 N R 𝔼 N d 𝔼 N E 𝔼 N P R Cgr d E d E Cgr P R
17 1 5 6 2 3 16 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N P R Cgr d E d E Cgr P R
18 15 17 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N R P Cgr E d d E Cgr P R
19 18 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R P Cgr E d d E Cgr P R
20 13 19 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d E Cgr P R
21 btwnconn1lem9 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P R Q Cgr E D
22 1 6 7 3 4 21 cgrcomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P E D Cgr R Q
23 1 2 3 4 5 6 7 10 12 20 22 cgrextendand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N E 𝔼 N P 𝔼 N Q 𝔼 N R 𝔼 N A B B C C c B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A b d b Cgr D B E Btwn C c E Btwn D d C Btwn c P C P Cgr C d C Btwn d R C R Cgr C E R Btwn P Q R Q Cgr R P d D Cgr P Q