Metamath Proof Explorer


Theorem btwnconn1lem10

Description: Lemma for btwnconn1 . Now we establish a congruence that will give us D = d when we compute P = Q later on. (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem10
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , D >. Cgr <. P , Q >. )

Proof

Step Hyp Ref Expression
1 simp11
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> N e. NN )
2 simp2r1
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> d e. ( EE ` N ) )
3 simp2r3
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> E e. ( EE ` N ) )
4 simp2l2
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> D e. ( EE ` N ) )
5 simp31
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> P e. ( EE ` N ) )
6 simp33
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> R e. ( EE ` N ) )
7 simp32
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) )
8 simprlr
 |-  ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> E Btwn <. D , d >. )
9 8 adantl
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> E Btwn <. D , d >. )
10 1 3 4 2 9 btwncomand
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> E Btwn <. d , D >. )
11 simpr3l
 |-  ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> R Btwn <. P , Q >. )
12 11 ad2antll
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> R Btwn <. P , Q >. )
13 btwnconn1lem8
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. R , P >. Cgr <. E , d >. )
14 cgrcomlr
 |-  ( ( N e. NN /\ ( R e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. P , R >. Cgr <. d , E >. ) )
15 1 6 5 3 2 14 syl122anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. P , R >. Cgr <. d , E >. ) )
16 cgrcom
 |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. P , R >. Cgr <. d , E >. <-> <. d , E >. Cgr <. P , R >. ) )
17 1 5 6 2 3 16 syl122anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , R >. Cgr <. d , E >. <-> <. d , E >. Cgr <. P , R >. ) )
18 15 17 bitrd
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. d , E >. Cgr <. P , R >. ) )
19 18 adantr
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. d , E >. Cgr <. P , R >. ) )
20 13 19 mpbid
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , E >. Cgr <. P , R >. )
21 btwnconn1lem9
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. R , Q >. Cgr <. E , D >. )
22 1 6 7 3 4 21 cgrcomand
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. E , D >. Cgr <. R , Q >. )
23 1 2 3 4 5 6 7 10 12 20 22 cgrextendand
 |-  ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , D >. Cgr <. P , Q >. )