Step |
Hyp |
Ref |
Expression |
1 |
|
simp11 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> N e. NN ) |
2 |
|
simp2r1 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> d e. ( EE ` N ) ) |
3 |
|
simp2r3 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) |
4 |
|
simp2l2 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
5 |
|
simp31 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> P e. ( EE ` N ) ) |
6 |
|
simp33 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> R e. ( EE ` N ) ) |
7 |
|
simp32 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> Q e. ( EE ` N ) ) |
8 |
|
simprlr |
|- ( ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) -> E Btwn <. D , d >. ) |
9 |
8
|
adantl |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> E Btwn <. D , d >. ) |
10 |
1 3 4 2 9
|
btwncomand |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> E Btwn <. d , D >. ) |
11 |
|
simpr3l |
|- ( ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) -> R Btwn <. P , Q >. ) |
12 |
11
|
ad2antll |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> R Btwn <. P , Q >. ) |
13 |
|
btwnconn1lem8 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. R , P >. Cgr <. E , d >. ) |
14 |
|
cgrcomlr |
|- ( ( N e. NN /\ ( R e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( E e. ( EE ` N ) /\ d e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. P , R >. Cgr <. d , E >. ) ) |
15 |
1 6 5 3 2 14
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. P , R >. Cgr <. d , E >. ) ) |
16 |
|
cgrcom |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( <. P , R >. Cgr <. d , E >. <-> <. d , E >. Cgr <. P , R >. ) ) |
17 |
1 5 6 2 3 16
|
syl122anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. P , R >. Cgr <. d , E >. <-> <. d , E >. Cgr <. P , R >. ) ) |
18 |
15 17
|
bitrd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. d , E >. Cgr <. P , R >. ) ) |
19 |
18
|
adantr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> ( <. R , P >. Cgr <. E , d >. <-> <. d , E >. Cgr <. P , R >. ) ) |
20 |
13 19
|
mpbid |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , E >. Cgr <. P , R >. ) |
21 |
|
btwnconn1lem9 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. R , Q >. Cgr <. E , D >. ) |
22 |
1 6 7 3 4 21
|
cgrcomand |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. E , D >. Cgr <. R , Q >. ) |
23 |
1 2 3 4 5 6 7 10 12 20 22
|
cgrextendand |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ c e. ( EE ` N ) ) /\ ( d e. ( EE ` N ) /\ b e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) ) /\ ( ( ( ( A =/= B /\ B =/= C /\ C =/= c ) /\ ( B Btwn <. A , C >. /\ B Btwn <. A , D >. ) ) /\ ( ( D Btwn <. A , c >. /\ <. D , c >. Cgr <. C , D >. ) /\ ( C Btwn <. A , d >. /\ <. C , d >. Cgr <. C , D >. ) ) /\ ( ( c Btwn <. A , b >. /\ <. c , b >. Cgr <. C , B >. ) /\ ( d Btwn <. A , b >. /\ <. d , b >. Cgr <. D , B >. ) ) ) /\ ( ( E Btwn <. C , c >. /\ E Btwn <. D , d >. ) /\ ( ( C Btwn <. c , P >. /\ <. C , P >. Cgr <. C , d >. ) /\ ( C Btwn <. d , R >. /\ <. C , R >. Cgr <. C , E >. ) /\ ( R Btwn <. P , Q >. /\ <. R , Q >. Cgr <. R , P >. ) ) ) ) ) -> <. d , D >. Cgr <. P , Q >. ) |