Metamath Proof Explorer


Theorem cbvopab2davw

Description: Change the second bound variable in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvopab2davw.1 ( ( 𝜑𝑦 = 𝑧 ) → ( 𝜓𝜒 ) )
Assertion cbvopab2davw ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { ⟨ 𝑥 , 𝑧 ⟩ ∣ 𝜒 } )

Proof

Step Hyp Ref Expression
1 cbvopab2davw.1 ( ( 𝜑𝑦 = 𝑧 ) → ( 𝜓𝜒 ) )
2 opeq2 ( 𝑦 = 𝑧 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 𝑧 ⟩ )
3 2 eqeq2d ( 𝑦 = 𝑧 → ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑡 = ⟨ 𝑥 , 𝑧 ⟩ ) )
4 3 adantl ( ( 𝜑𝑦 = 𝑧 ) → ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑡 = ⟨ 𝑥 , 𝑧 ⟩ ) )
5 4 1 anbi12d ( ( 𝜑𝑦 = 𝑧 ) → ( ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( 𝑡 = ⟨ 𝑥 , 𝑧 ⟩ ∧ 𝜒 ) ) )
6 5 cbvexdvaw ( 𝜑 → ( ∃ 𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑧 ( 𝑡 = ⟨ 𝑥 , 𝑧 ⟩ ∧ 𝜒 ) ) )
7 6 exbidv ( 𝜑 → ( ∃ 𝑥𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑥𝑧 ( 𝑡 = ⟨ 𝑥 , 𝑧 ⟩ ∧ 𝜒 ) ) )
8 7 abbidv ( 𝜑 → { 𝑡 ∣ ∃ 𝑥𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) } = { 𝑡 ∣ ∃ 𝑥𝑧 ( 𝑡 = ⟨ 𝑥 , 𝑧 ⟩ ∧ 𝜒 ) } )
9 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { 𝑡 ∣ ∃ 𝑥𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) }
10 df-opab { ⟨ 𝑥 , 𝑧 ⟩ ∣ 𝜒 } = { 𝑡 ∣ ∃ 𝑥𝑧 ( 𝑡 = ⟨ 𝑥 , 𝑧 ⟩ ∧ 𝜒 ) }
11 8 9 10 3eqtr4g ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { ⟨ 𝑥 , 𝑧 ⟩ ∣ 𝜒 } )