Metamath Proof Explorer


Theorem cbvopabdavw

Description: Change bound variables in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvopabdavw.1 ( ( ( 𝜑𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → ( 𝜓𝜒 ) )
Assertion cbvopabdavw ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜒 } )

Proof

Step Hyp Ref Expression
1 cbvopabdavw.1 ( ( ( 𝜑𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → ( 𝜓𝜒 ) )
2 simplr ( ( ( 𝜑𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → 𝑥 = 𝑧 )
3 simpr ( ( ( 𝜑𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → 𝑦 = 𝑤 )
4 2 3 opeq12d ( ( ( 𝜑𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑧 , 𝑤 ⟩ )
5 4 eqeq2d ( ( ( 𝜑𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑡 = ⟨ 𝑧 , 𝑤 ⟩ ) )
6 5 1 anbi12d ( ( ( 𝜑𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → ( ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( 𝑡 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝜒 ) ) )
7 6 cbvexdvaw ( ( 𝜑𝑥 = 𝑧 ) → ( ∃ 𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑤 ( 𝑡 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝜒 ) ) )
8 7 cbvexdvaw ( 𝜑 → ( ∃ 𝑥𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑧𝑤 ( 𝑡 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝜒 ) ) )
9 8 abbidv ( 𝜑 → { 𝑡 ∣ ∃ 𝑥𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) } = { 𝑡 ∣ ∃ 𝑧𝑤 ( 𝑡 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝜒 ) } )
10 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { 𝑡 ∣ ∃ 𝑥𝑦 ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) }
11 df-opab { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜒 } = { 𝑡 ∣ ∃ 𝑧𝑤 ( 𝑡 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝜒 ) }
12 9 10 11 3eqtr4g ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜒 } )