Step |
Hyp |
Ref |
Expression |
1 |
|
cbvopabdavw.1 |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> ( ps <-> ch ) ) |
2 |
|
simplr |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> x = z ) |
3 |
|
simpr |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> y = w ) |
4 |
2 3
|
opeq12d |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> <. x , y >. = <. z , w >. ) |
5 |
4
|
eqeq2d |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> ( t = <. x , y >. <-> t = <. z , w >. ) ) |
6 |
5 1
|
anbi12d |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> ( ( t = <. x , y >. /\ ps ) <-> ( t = <. z , w >. /\ ch ) ) ) |
7 |
6
|
cbvexdvaw |
|- ( ( ph /\ x = z ) -> ( E. y ( t = <. x , y >. /\ ps ) <-> E. w ( t = <. z , w >. /\ ch ) ) ) |
8 |
7
|
cbvexdvaw |
|- ( ph -> ( E. x E. y ( t = <. x , y >. /\ ps ) <-> E. z E. w ( t = <. z , w >. /\ ch ) ) ) |
9 |
8
|
abbidv |
|- ( ph -> { t | E. x E. y ( t = <. x , y >. /\ ps ) } = { t | E. z E. w ( t = <. z , w >. /\ ch ) } ) |
10 |
|
df-opab |
|- { <. x , y >. | ps } = { t | E. x E. y ( t = <. x , y >. /\ ps ) } |
11 |
|
df-opab |
|- { <. z , w >. | ch } = { t | E. z E. w ( t = <. z , w >. /\ ch ) } |
12 |
9 10 11
|
3eqtr4g |
|- ( ph -> { <. x , y >. | ps } = { <. z , w >. | ch } ) |