Metamath Proof Explorer


Theorem cbvopabdavw

Description: Change bound variables in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvopabdavw.1
|- ( ( ( ph /\ x = z ) /\ y = w ) -> ( ps <-> ch ) )
Assertion cbvopabdavw
|- ( ph -> { <. x , y >. | ps } = { <. z , w >. | ch } )

Proof

Step Hyp Ref Expression
1 cbvopabdavw.1
 |-  ( ( ( ph /\ x = z ) /\ y = w ) -> ( ps <-> ch ) )
2 simplr
 |-  ( ( ( ph /\ x = z ) /\ y = w ) -> x = z )
3 simpr
 |-  ( ( ( ph /\ x = z ) /\ y = w ) -> y = w )
4 2 3 opeq12d
 |-  ( ( ( ph /\ x = z ) /\ y = w ) -> <. x , y >. = <. z , w >. )
5 4 eqeq2d
 |-  ( ( ( ph /\ x = z ) /\ y = w ) -> ( t = <. x , y >. <-> t = <. z , w >. ) )
6 5 1 anbi12d
 |-  ( ( ( ph /\ x = z ) /\ y = w ) -> ( ( t = <. x , y >. /\ ps ) <-> ( t = <. z , w >. /\ ch ) ) )
7 6 cbvexdvaw
 |-  ( ( ph /\ x = z ) -> ( E. y ( t = <. x , y >. /\ ps ) <-> E. w ( t = <. z , w >. /\ ch ) ) )
8 7 cbvexdvaw
 |-  ( ph -> ( E. x E. y ( t = <. x , y >. /\ ps ) <-> E. z E. w ( t = <. z , w >. /\ ch ) ) )
9 8 abbidv
 |-  ( ph -> { t | E. x E. y ( t = <. x , y >. /\ ps ) } = { t | E. z E. w ( t = <. z , w >. /\ ch ) } )
10 df-opab
 |-  { <. x , y >. | ps } = { t | E. x E. y ( t = <. x , y >. /\ ps ) }
11 df-opab
 |-  { <. z , w >. | ch } = { t | E. z E. w ( t = <. z , w >. /\ ch ) }
12 9 10 11 3eqtr4g
 |-  ( ph -> { <. x , y >. | ps } = { <. z , w >. | ch } )