Metamath Proof Explorer


Theorem cbvopabdavw

Description: Change bound variables in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvopabdavw.1 φ x = z y = w ψ χ
Assertion cbvopabdavw φ x y | ψ = z w | χ

Proof

Step Hyp Ref Expression
1 cbvopabdavw.1 φ x = z y = w ψ χ
2 simplr φ x = z y = w x = z
3 simpr φ x = z y = w y = w
4 2 3 opeq12d φ x = z y = w x y = z w
5 4 eqeq2d φ x = z y = w t = x y t = z w
6 5 1 anbi12d φ x = z y = w t = x y ψ t = z w χ
7 6 cbvexdvaw φ x = z y t = x y ψ w t = z w χ
8 7 cbvexdvaw φ x y t = x y ψ z w t = z w χ
9 8 abbidv φ t | x y t = x y ψ = t | z w t = z w χ
10 df-opab x y | ψ = t | x y t = x y ψ
11 df-opab z w | χ = t | z w t = z w χ
12 9 10 11 3eqtr4g φ x y | ψ = z w | χ