| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvral2.1 |
⊢ Ⅎ 𝑧 𝜑 |
| 2 |
|
cbvral2.2 |
⊢ Ⅎ 𝑥 𝜒 |
| 3 |
|
cbvral2.3 |
⊢ Ⅎ 𝑤 𝜒 |
| 4 |
|
cbvral2.4 |
⊢ Ⅎ 𝑦 𝜓 |
| 5 |
|
cbvral2.5 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜒 ) ) |
| 6 |
|
cbvral2.6 |
⊢ ( 𝑦 = 𝑤 → ( 𝜒 ↔ 𝜓 ) ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐵 |
| 8 |
7 1
|
nfral |
⊢ Ⅎ 𝑧 ∀ 𝑦 ∈ 𝐵 𝜑 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
| 10 |
9 2
|
nfral |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐵 𝜒 |
| 11 |
5
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 𝜒 ) ) |
| 12 |
8 10 11
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜒 ) |
| 13 |
3 4 6
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝜒 ↔ ∀ 𝑤 ∈ 𝐵 𝜓 ) |
| 14 |
13
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜒 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐵 𝜓 ) |
| 15 |
12 14
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐵 𝜓 ) |