| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvral2.1 | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 2 |  | cbvral2.2 | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 3 |  | cbvral2.3 | ⊢ Ⅎ 𝑤 𝜒 | 
						
							| 4 |  | cbvral2.4 | ⊢ Ⅎ 𝑦 𝜓 | 
						
							| 5 |  | cbvral2.5 | ⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 6 |  | cbvral2.6 | ⊢ ( 𝑦  =  𝑤  →  ( 𝜒  ↔  𝜓 ) ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑧 𝐵 | 
						
							| 8 | 7 1 | nfral | ⊢ Ⅎ 𝑧 ∀ 𝑦  ∈  𝐵 𝜑 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 10 | 9 2 | nfral | ⊢ Ⅎ 𝑥 ∀ 𝑦  ∈  𝐵 𝜒 | 
						
							| 11 | 5 | ralbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑦  ∈  𝐵 𝜒 ) ) | 
						
							| 12 | 8 10 11 | cbvralw | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑧  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝜒 ) | 
						
							| 13 | 3 4 6 | cbvralw | ⊢ ( ∀ 𝑦  ∈  𝐵 𝜒  ↔  ∀ 𝑤  ∈  𝐵 𝜓 ) | 
						
							| 14 | 13 | ralbii | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝜒  ↔  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐵 𝜓 ) | 
						
							| 15 | 12 14 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐵 𝜓 ) |