Description: Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvral2v . (Contributed by Alexander van der Vekens, 2-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvral2.1 | |- F/ z ph |
|
cbvral2.2 | |- F/ x ch |
||
cbvral2.3 | |- F/ w ch |
||
cbvral2.4 | |- F/ y ps |
||
cbvral2.5 | |- ( x = z -> ( ph <-> ch ) ) |
||
cbvral2.6 | |- ( y = w -> ( ch <-> ps ) ) |
||
Assertion | cbvral2 | |- ( A. x e. A A. y e. B ph <-> A. z e. A A. w e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral2.1 | |- F/ z ph |
|
2 | cbvral2.2 | |- F/ x ch |
|
3 | cbvral2.3 | |- F/ w ch |
|
4 | cbvral2.4 | |- F/ y ps |
|
5 | cbvral2.5 | |- ( x = z -> ( ph <-> ch ) ) |
|
6 | cbvral2.6 | |- ( y = w -> ( ch <-> ps ) ) |
|
7 | nfcv | |- F/_ z B |
|
8 | 7 1 | nfral | |- F/ z A. y e. B ph |
9 | nfcv | |- F/_ x B |
|
10 | 9 2 | nfral | |- F/ x A. y e. B ch |
11 | 5 | ralbidv | |- ( x = z -> ( A. y e. B ph <-> A. y e. B ch ) ) |
12 | 8 10 11 | cbvralw | |- ( A. x e. A A. y e. B ph <-> A. z e. A A. y e. B ch ) |
13 | 3 4 6 | cbvralw | |- ( A. y e. B ch <-> A. w e. B ps ) |
14 | 13 | ralbii | |- ( A. z e. A A. y e. B ch <-> A. z e. A A. w e. B ps ) |
15 | 12 14 | bitri | |- ( A. x e. A A. y e. B ph <-> A. z e. A A. w e. B ps ) |