| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvraldva2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
cbvraldva2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) |
| 3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) |
| 4 |
3 2
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 5 |
4 1
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 6 |
5
|
ancoms |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 7 |
6
|
pm5.32da |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) ) |
| 8 |
7
|
cbvexvw |
⊢ ( ∃ 𝑥 ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 9 |
|
19.42v |
⊢ ( ∃ 𝑥 ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 10 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 11 |
8 9 10
|
3bitr3i |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 12 |
|
pm5.32 |
⊢ ( ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) ↔ ( ( 𝜑 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) ) |
| 13 |
11 12
|
mpbir |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 14 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 15 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜒 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) |
| 16 |
13 14 15
|
3bitr4g |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |