| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatws1len | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ ( 𝑊  ++  〈“ 𝑋 ”〉 ) )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( 𝑊  ++  〈“ 𝑋 ”〉 ) )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ ( 𝑊  ++  〈“ 𝑋 ”〉 ) )  =  ( 𝑁  +  1 )  ↔  ( ( ♯ ‘ 𝑊 )  +  1 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 4 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | nn0cnd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 7 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 9 |  | 1cnd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 10 | 6 8 9 | addcan2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( ♯ ‘ 𝑊 )  +  1 )  =  ( 𝑁  +  1 )  ↔  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) | 
						
							| 11 | 3 10 | bitrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ ( 𝑊  ++  〈“ 𝑋 ”〉 ) )  =  ( 𝑁  +  1 )  ↔  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) |