Step |
Hyp |
Ref |
Expression |
1 |
|
unfi2 |
⊢ ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( 𝐴 ∪ 𝐵 ) ≺ ω ) |
2 |
|
sdomnen |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≺ ω → ¬ ( 𝐴 ∪ 𝐵 ) ≈ ω ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ¬ ( 𝐴 ∪ 𝐵 ) ≈ ω ) |
4 |
3
|
con2i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ¬ ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) ) |
5 |
|
ianor |
⊢ ( ¬ ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) ↔ ( ¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω ) ) |
6 |
|
relen |
⊢ Rel ≈ |
7 |
6
|
brrelex1i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
8 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
9 |
|
ssdomg |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) ) |
10 |
7 8 9
|
mpisyl |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) |
11 |
|
domentr |
⊢ ( ( 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ≈ ω ) → 𝐴 ≼ ω ) |
12 |
10 11
|
mpancom |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → 𝐴 ≼ ω ) |
13 |
12
|
anim1i |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ ω ∧ ¬ 𝐴 ≺ ω ) → ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω ) ) |
14 |
|
bren2 |
⊢ ( 𝐴 ≈ ω ↔ ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ ω ∧ ¬ 𝐴 ≺ ω ) → 𝐴 ≈ ω ) |
16 |
15
|
ex |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( ¬ 𝐴 ≺ ω → 𝐴 ≈ ω ) ) |
17 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
18 |
|
ssdomg |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ) ) |
19 |
7 17 18
|
mpisyl |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ) |
20 |
|
domentr |
⊢ ( ( 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ≈ ω ) → 𝐵 ≼ ω ) |
21 |
19 20
|
mpancom |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → 𝐵 ≼ ω ) |
22 |
21
|
anim1i |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ ω ∧ ¬ 𝐵 ≺ ω ) → ( 𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω ) ) |
23 |
|
bren2 |
⊢ ( 𝐵 ≈ ω ↔ ( 𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω ) ) |
24 |
22 23
|
sylibr |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ ω ∧ ¬ 𝐵 ≺ ω ) → 𝐵 ≈ ω ) |
25 |
24
|
ex |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( ¬ 𝐵 ≺ ω → 𝐵 ≈ ω ) ) |
26 |
16 25
|
orim12d |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( ( ¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω ) → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) ) ) |
27 |
5 26
|
syl5bi |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( ¬ ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) ) ) |
28 |
4 27
|
mpd |
⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) ) |