Metamath Proof Explorer


Theorem cdainflem

Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013)

Ref Expression
Assertion cdainflem ( ( 𝐴𝐵 ) ≈ ω → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) )

Proof

Step Hyp Ref Expression
1 unfi2 ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( 𝐴𝐵 ) ≺ ω )
2 sdomnen ( ( 𝐴𝐵 ) ≺ ω → ¬ ( 𝐴𝐵 ) ≈ ω )
3 1 2 syl ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ¬ ( 𝐴𝐵 ) ≈ ω )
4 3 con2i ( ( 𝐴𝐵 ) ≈ ω → ¬ ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) )
5 ianor ( ¬ ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) ↔ ( ¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω ) )
6 relen Rel ≈
7 6 brrelex1i ( ( 𝐴𝐵 ) ≈ ω → ( 𝐴𝐵 ) ∈ V )
8 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
9 ssdomg ( ( 𝐴𝐵 ) ∈ V → ( 𝐴 ⊆ ( 𝐴𝐵 ) → 𝐴 ≼ ( 𝐴𝐵 ) ) )
10 7 8 9 mpisyl ( ( 𝐴𝐵 ) ≈ ω → 𝐴 ≼ ( 𝐴𝐵 ) )
11 domentr ( ( 𝐴 ≼ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ≈ ω ) → 𝐴 ≼ ω )
12 10 11 mpancom ( ( 𝐴𝐵 ) ≈ ω → 𝐴 ≼ ω )
13 12 anim1i ( ( ( 𝐴𝐵 ) ≈ ω ∧ ¬ 𝐴 ≺ ω ) → ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω ) )
14 bren2 ( 𝐴 ≈ ω ↔ ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω ) )
15 13 14 sylibr ( ( ( 𝐴𝐵 ) ≈ ω ∧ ¬ 𝐴 ≺ ω ) → 𝐴 ≈ ω )
16 15 ex ( ( 𝐴𝐵 ) ≈ ω → ( ¬ 𝐴 ≺ ω → 𝐴 ≈ ω ) )
17 ssun2 𝐵 ⊆ ( 𝐴𝐵 )
18 ssdomg ( ( 𝐴𝐵 ) ∈ V → ( 𝐵 ⊆ ( 𝐴𝐵 ) → 𝐵 ≼ ( 𝐴𝐵 ) ) )
19 7 17 18 mpisyl ( ( 𝐴𝐵 ) ≈ ω → 𝐵 ≼ ( 𝐴𝐵 ) )
20 domentr ( ( 𝐵 ≼ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ≈ ω ) → 𝐵 ≼ ω )
21 19 20 mpancom ( ( 𝐴𝐵 ) ≈ ω → 𝐵 ≼ ω )
22 21 anim1i ( ( ( 𝐴𝐵 ) ≈ ω ∧ ¬ 𝐵 ≺ ω ) → ( 𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω ) )
23 bren2 ( 𝐵 ≈ ω ↔ ( 𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω ) )
24 22 23 sylibr ( ( ( 𝐴𝐵 ) ≈ ω ∧ ¬ 𝐵 ≺ ω ) → 𝐵 ≈ ω )
25 24 ex ( ( 𝐴𝐵 ) ≈ ω → ( ¬ 𝐵 ≺ ω → 𝐵 ≈ ω ) )
26 16 25 orim12d ( ( 𝐴𝐵 ) ≈ ω → ( ( ¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω ) → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) ) )
27 5 26 syl5bi ( ( 𝐴𝐵 ) ≈ ω → ( ¬ ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) ) )
28 4 27 mpd ( ( 𝐴𝐵 ) ≈ ω → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) )