Metamath Proof Explorer


Theorem cdainflem

Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013)

Ref Expression
Assertion cdainflem A B ω A ω B ω

Proof

Step Hyp Ref Expression
1 unfi2 A ω B ω A B ω
2 sdomnen A B ω ¬ A B ω
3 1 2 syl A ω B ω ¬ A B ω
4 3 con2i A B ω ¬ A ω B ω
5 ianor ¬ A ω B ω ¬ A ω ¬ B ω
6 relen Rel
7 6 brrelex1i A B ω A B V
8 ssun1 A A B
9 ssdomg A B V A A B A A B
10 7 8 9 mpisyl A B ω A A B
11 domentr A A B A B ω A ω
12 10 11 mpancom A B ω A ω
13 12 anim1i A B ω ¬ A ω A ω ¬ A ω
14 bren2 A ω A ω ¬ A ω
15 13 14 sylibr A B ω ¬ A ω A ω
16 15 ex A B ω ¬ A ω A ω
17 ssun2 B A B
18 ssdomg A B V B A B B A B
19 7 17 18 mpisyl A B ω B A B
20 domentr B A B A B ω B ω
21 19 20 mpancom A B ω B ω
22 21 anim1i A B ω ¬ B ω B ω ¬ B ω
23 bren2 B ω B ω ¬ B ω
24 22 23 sylibr A B ω ¬ B ω B ω
25 24 ex A B ω ¬ B ω B ω
26 16 25 orim12d A B ω ¬ A ω ¬ B ω A ω B ω
27 5 26 syl5bi A B ω ¬ A ω B ω A ω B ω
28 4 27 mpd A B ω A ω B ω