Metamath Proof Explorer


Theorem cdleme26f2

Description: Part of proof of Lemma E in Crawley p. 113. cdleme26fALTN with s and t swapped (this case is not mentioned by them). If s <_ t \/ v, then f(s) <_ f_s(t) \/ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013)

Ref Expression
Hypotheses cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
cdleme26.l = ( le ‘ 𝐾 )
cdleme26.j = ( join ‘ 𝐾 )
cdleme26.m = ( meet ‘ 𝐾 )
cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme26f2.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme26f2.f 𝐺 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme26f2.n 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐺 ( ( 𝑇 𝑠 ) 𝑊 ) ) )
cdleme26f2.e 𝐸 = ( 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
Assertion cdleme26f2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐺 ( 𝐸 𝑉 ) )

Proof

Step Hyp Ref Expression
1 cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme26.l = ( le ‘ 𝐾 )
3 cdleme26.j = ( join ‘ 𝐾 )
4 cdleme26.m = ( meet ‘ 𝐾 )
5 cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme26f2.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme26f2.f 𝐺 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme26f2.n 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐺 ( ( 𝑇 𝑠 ) 𝑊 ) ) )
10 cdleme26f2.e 𝐸 = ( 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
11 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) )
13 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ¬ 𝑠 ( 𝑃 𝑄 ) )
14 simp12r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑇 ( 𝑃 𝑄 ) )
15 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑃𝑄 )
16 13 14 15 3jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) )
17 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
18 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
19 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) )
20 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) )
21 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑉𝐴𝑉 𝑊 ) )
22 2 3 4 5 6 7 8 9 cdleme22f2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐺 ( 𝑂 𝑉 ) )
23 11 12 16 17 18 19 20 21 22 syl323anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐺 ( 𝑂 𝑉 ) )
24 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑇𝐴 )
25 simp23r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ¬ 𝑇 𝑊 )
26 1 2 3 4 5 6 7 8 9 10 cdleme25cl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ) → 𝐸𝐵 )
27 11 17 18 24 25 15 14 26 syl322anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐸𝐵 )
28 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑠𝐴 )
29 simp13r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ¬ 𝑠 𝑊 )
30 1 fvexi 𝐵 ∈ V
31 30 10 riotasv ( ( 𝐸𝐵𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) → 𝐸 = 𝑂 )
32 27 28 29 13 31 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐸 = 𝑂 )
33 32 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝐸 𝑉 ) = ( 𝑂 𝑉 ) )
34 23 33 breqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ( 𝑠𝑇𝑠 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐺 ( 𝐸 𝑉 ) )