Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
|- B = ( Base ` K ) |
2 |
|
cdleme26.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme26.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme26.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme26.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme26.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme26f2.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme26f2.f |
|- G = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme26f2.n |
|- O = ( ( P .\/ Q ) ./\ ( G .\/ ( ( T .\/ s ) ./\ W ) ) ) |
10 |
|
cdleme26f2.e |
|- E = ( iota_ u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = O ) ) |
11 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( T e. A /\ -. T .<_ W ) ) |
13 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> -. s .<_ ( P .\/ Q ) ) |
14 |
|
simp12r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> T .<_ ( P .\/ Q ) ) |
15 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> P =/= Q ) |
16 |
13 14 15
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( -. s .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) /\ P =/= Q ) ) |
17 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
18 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
19 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( s e. A /\ -. s .<_ W ) ) |
20 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( s =/= T /\ s .<_ ( T .\/ V ) ) ) |
21 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( V e. A /\ V .<_ W ) ) |
22 |
2 3 4 5 6 7 8 9
|
cdleme22f2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. s .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> G .<_ ( O .\/ V ) ) |
23 |
11 12 16 17 18 19 20 21 22
|
syl323anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> G .<_ ( O .\/ V ) ) |
24 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> T e. A ) |
25 |
|
simp23r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> -. T .<_ W ) |
26 |
1 2 3 4 5 6 7 8 9 10
|
cdleme25cl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) ) -> E e. B ) |
27 |
11 17 18 24 25 15 14 26
|
syl322anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> E e. B ) |
28 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> s e. A ) |
29 |
|
simp13r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> -. s .<_ W ) |
30 |
1
|
fvexi |
|- B e. _V |
31 |
30 10
|
riotasv |
|- ( ( E e. B /\ s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) -> E = O ) |
32 |
27 28 29 13 31
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> E = O ) |
33 |
32
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( E .\/ V ) = ( O .\/ V ) ) |
34 |
23 33
|
breqtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. s .<_ ( P .\/ Q ) /\ ( s =/= T /\ s .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> G .<_ ( E .\/ V ) ) |