Metamath Proof Explorer


Theorem cdleme31sn1c

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 1-Mar-2013)

Ref Expression
Hypotheses cdleme31sn1c.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdleme31sn1c.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
cdleme31sn1c.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
cdleme31sn1c.y 𝑌 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
cdleme31sn1c.c 𝐶 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑌 ) )
Assertion cdleme31sn1c ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝑁 = 𝐶 )

Proof

Step Hyp Ref Expression
1 cdleme31sn1c.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
2 cdleme31sn1c.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
3 cdleme31sn1c.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
4 cdleme31sn1c.y 𝑌 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
5 cdleme31sn1c.c 𝐶 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑌 ) )
6 eqid ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ) = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) )
7 2 3 6 cdleme31sn1 ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝑁 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ) )
8 1 4 cdleme31se ( 𝑅𝐴 𝑅 / 𝑠 𝐺 = 𝑌 )
9 8 adantr ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝐺 = 𝑌 )
10 9 eqeq2d ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → ( 𝑦 = 𝑅 / 𝑠 𝐺𝑦 = 𝑌 ) )
11 10 imbi2d ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → ( ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ↔ ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑌 ) ) )
12 11 ralbidv ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → ( ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ↔ ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑌 ) ) )
13 12 riotabidv ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ) = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑌 ) ) )
14 13 5 eqtr4di ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ) = 𝐶 )
15 7 14 eqtrd ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝑁 = 𝐶 )