| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdleme39.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdleme39.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdleme39.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdleme39.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdleme39.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdleme39.u | ⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) | 
						
							| 7 |  | cdleme39.e | ⊢ 𝐸  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) | 
						
							| 8 |  | cdleme39.g | ⊢ 𝐺  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐸  ∨  ( ( 𝑅  ∨  𝑡 )  ∧  𝑊 ) ) ) | 
						
							| 9 |  | cdleme39.y | ⊢ 𝑌  =  ( ( 𝑢  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑢 )  ∧  𝑊 ) ) ) | 
						
							| 10 |  | cdleme39.z | ⊢ 𝑍  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑌  ∨  ( ( 𝑆  ∨  𝑢 )  ∧  𝑊 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( ( 𝑡  ∨  𝐸 )  ∧  𝑊 )  =  ( ( 𝑡  ∨  𝐸 )  ∧  𝑊 ) | 
						
							| 12 |  | eqid | ⊢ ( ( 𝑢  ∨  𝑌 )  ∧  𝑊 )  =  ( ( 𝑢  ∨  𝑌 )  ∧  𝑊 ) | 
						
							| 13 |  | eqid | ⊢ ( ( 𝑅  ∨  ( ( 𝑡  ∨  𝐸 )  ∧  𝑊 ) )  ∧  ( 𝐸  ∨  ( ( 𝑡  ∨  𝑅 )  ∧  𝑊 ) ) )  =  ( ( 𝑅  ∨  ( ( 𝑡  ∨  𝐸 )  ∧  𝑊 ) )  ∧  ( 𝐸  ∨  ( ( 𝑡  ∨  𝑅 )  ∧  𝑊 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( ( 𝑆  ∨  ( ( 𝑢  ∨  𝑌 )  ∧  𝑊 ) )  ∧  ( 𝑌  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑆  ∨  ( ( 𝑢  ∨  𝑌 )  ∧  𝑊 ) )  ∧  ( 𝑌  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 9 11 12 13 14 | cdleme38n | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( ( 𝑅  ∨  ( ( 𝑡  ∨  𝐸 )  ∧  𝑊 ) )  ∧  ( 𝐸  ∨  ( ( 𝑡  ∨  𝑅 )  ∧  𝑊 ) ) )  ≠  ( ( 𝑆  ∨  ( ( 𝑢  ∨  𝑌 )  ∧  𝑊 ) )  ∧  ( 𝑌  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) ) ) | 
						
							| 16 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 18 |  | simp13l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 19 |  | simp22l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑅  ∈  𝐴 ) | 
						
							| 20 |  | simp22r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ¬  𝑅  ≤  𝑊 ) | 
						
							| 21 |  | simp311 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 22 |  | simp32l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 11 | cdleme39a | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  𝐺  =  ( ( 𝑅  ∨  ( ( 𝑡  ∨  𝐸 )  ∧  𝑊 ) )  ∧  ( 𝐸  ∨  ( ( 𝑡  ∨  𝑅 )  ∧  𝑊 ) ) ) ) | 
						
							| 24 | 16 17 18 19 20 21 22 23 | syl322anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝐺  =  ( ( 𝑅  ∨  ( ( 𝑡  ∨  𝐸 )  ∧  𝑊 ) )  ∧  ( 𝐸  ∨  ( ( 𝑡  ∨  𝑅 )  ∧  𝑊 ) ) ) ) | 
						
							| 25 |  | simp23l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑆  ∈  𝐴 ) | 
						
							| 26 |  | simp23r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ¬  𝑆  ≤  𝑊 ) | 
						
							| 27 |  | simp312 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 28 |  | simp33l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 ) ) | 
						
							| 29 | 1 2 3 4 5 6 9 10 12 | cdleme39a | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 ) ) )  →  𝑍  =  ( ( 𝑆  ∨  ( ( 𝑢  ∨  𝑌 )  ∧  𝑊 ) )  ∧  ( 𝑌  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) ) ) | 
						
							| 30 | 16 17 18 25 26 27 28 29 | syl322anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑍  =  ( ( 𝑆  ∨  ( ( 𝑢  ∨  𝑌 )  ∧  𝑊 ) )  ∧  ( 𝑌  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) ) ) | 
						
							| 31 | 15 24 30 | 3netr4d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑆 )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ≤  𝑊 )  ∧  ¬  𝑢  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝐺  ≠  𝑍 ) |