Metamath Proof Explorer


Theorem cdleme39n

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. E , Y , G , Z serve as f(t), f(u), f_t( R ), f_t( S ). Put hypotheses of cdleme38n in convention of cdleme32sn1awN . TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013)

Ref Expression
Hypotheses cdleme39.l ˙=K
cdleme39.j ˙=joinK
cdleme39.m ˙=meetK
cdleme39.a A=AtomsK
cdleme39.h H=LHypK
cdleme39.u U=P˙Q˙W
cdleme39.e E=t˙U˙Q˙P˙t˙W
cdleme39.g G=P˙Q˙E˙R˙t˙W
cdleme39.y Y=u˙U˙Q˙P˙u˙W
cdleme39.z Z=P˙Q˙Y˙S˙u˙W
Assertion cdleme39n KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QGZ

Proof

Step Hyp Ref Expression
1 cdleme39.l ˙=K
2 cdleme39.j ˙=joinK
3 cdleme39.m ˙=meetK
4 cdleme39.a A=AtomsK
5 cdleme39.h H=LHypK
6 cdleme39.u U=P˙Q˙W
7 cdleme39.e E=t˙U˙Q˙P˙t˙W
8 cdleme39.g G=P˙Q˙E˙R˙t˙W
9 cdleme39.y Y=u˙U˙Q˙P˙u˙W
10 cdleme39.z Z=P˙Q˙Y˙S˙u˙W
11 eqid t˙E˙W=t˙E˙W
12 eqid u˙Y˙W=u˙Y˙W
13 eqid R˙t˙E˙W˙E˙t˙R˙W=R˙t˙E˙W˙E˙t˙R˙W
14 eqid S˙u˙Y˙W˙Y˙u˙S˙W=S˙u˙Y˙W˙Y˙u˙S˙W
15 1 2 3 4 5 6 7 9 11 12 13 14 cdleme38n KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QR˙t˙E˙W˙E˙t˙R˙WS˙u˙Y˙W˙Y˙u˙S˙W
16 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QKHLWH
17 simp12l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QPA
18 simp13l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QQA
19 simp22l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QRA
20 simp22r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙Q¬R˙W
21 simp311 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QR˙P˙Q
22 simp32l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QtA¬t˙W
23 1 2 3 4 5 6 7 8 11 cdleme39a KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WG=R˙t˙E˙W˙E˙t˙R˙W
24 16 17 18 19 20 21 22 23 syl322anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QG=R˙t˙E˙W˙E˙t˙R˙W
25 simp23l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QSA
26 simp23r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙Q¬S˙W
27 simp312 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QS˙P˙Q
28 simp33l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QuA¬u˙W
29 1 2 3 4 5 6 9 10 12 cdleme39a KHLWHPAQASA¬S˙WS˙P˙QuA¬u˙WZ=S˙u˙Y˙W˙Y˙u˙S˙W
30 16 17 18 25 26 27 28 29 syl322anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QZ=S˙u˙Y˙W˙Y˙u˙S˙W
31 15 24 30 3netr4d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙QS˙P˙QRStA¬t˙W¬t˙P˙QuA¬u˙W¬u˙P˙QGZ