Metamath Proof Explorer


Theorem cdleme39a

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. E , Y , G , Z serve as f(t), f(u), f_t( R ), f_t( S ). Put hypotheses of cdleme38n in convention of cdleme32sn1awN . TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013)

Ref Expression
Hypotheses cdleme39.l ˙=K
cdleme39.j ˙=joinK
cdleme39.m ˙=meetK
cdleme39.a A=AtomsK
cdleme39.h H=LHypK
cdleme39.u U=P˙Q˙W
cdleme39.e E=t˙U˙Q˙P˙t˙W
cdleme39.g G=P˙Q˙E˙R˙t˙W
cdleme39a.v V=t˙E˙W
Assertion cdleme39a KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WG=R˙V˙E˙t˙R˙W

Proof

Step Hyp Ref Expression
1 cdleme39.l ˙=K
2 cdleme39.j ˙=joinK
3 cdleme39.m ˙=meetK
4 cdleme39.a A=AtomsK
5 cdleme39.h H=LHypK
6 cdleme39.u U=P˙Q˙W
7 cdleme39.e E=t˙U˙Q˙P˙t˙W
8 cdleme39.g G=P˙Q˙E˙R˙t˙W
9 cdleme39a.v V=t˙E˙W
10 simp11 KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WKHLWH
11 simp12 KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WPA
12 simp13 KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WQA
13 simp2 KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WRA¬R˙W
14 simp3l KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WR˙P˙Q
15 1 2 3 4 5 6 cdleme4 KHLWHPAQARA¬R˙WR˙P˙QP˙Q=R˙U
16 10 11 12 13 14 15 syl131anc KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WP˙Q=R˙U
17 simp3r KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WtA¬t˙W
18 1 2 3 4 5 6 7 cdleme2 KHLWHPAQAtA¬t˙Wt˙E˙W=U
19 10 11 12 17 18 syl13anc KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙Wt˙E˙W=U
20 9 19 eqtrid KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WV=U
21 20 oveq2d KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WR˙V=R˙U
22 16 21 eqtr4d KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WP˙Q=R˙V
23 simp11l KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WKHL
24 simp2l KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WRA
25 simp3rl KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WtA
26 2 4 hlatjcom KHLRAtAR˙t=t˙R
27 23 24 25 26 syl3anc KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WR˙t=t˙R
28 27 oveq1d KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WR˙t˙W=t˙R˙W
29 28 oveq2d KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WE˙R˙t˙W=E˙t˙R˙W
30 22 29 oveq12d KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WP˙Q˙E˙R˙t˙W=R˙V˙E˙t˙R˙W
31 8 30 eqtrid KHLWHPAQARA¬R˙WR˙P˙QtA¬t˙WG=R˙V˙E˙t˙R˙W