Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. E , Y , G , Z serve as f(t), f(u), f_t( R ), f_t( S ). Put hypotheses of cdleme38n in convention of cdleme32sn1awN . TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme39.l | |
|
cdleme39.j | |
||
cdleme39.m | |
||
cdleme39.a | |
||
cdleme39.h | |
||
cdleme39.u | |
||
cdleme39.e | |
||
cdleme39.g | |
||
cdleme39a.v | |
||
Assertion | cdleme39a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme39.l | |
|
2 | cdleme39.j | |
|
3 | cdleme39.m | |
|
4 | cdleme39.a | |
|
5 | cdleme39.h | |
|
6 | cdleme39.u | |
|
7 | cdleme39.e | |
|
8 | cdleme39.g | |
|
9 | cdleme39a.v | |
|
10 | simp11 | |
|
11 | simp12 | |
|
12 | simp13 | |
|
13 | simp2 | |
|
14 | simp3l | |
|
15 | 1 2 3 4 5 6 | cdleme4 | |
16 | 10 11 12 13 14 15 | syl131anc | |
17 | simp3r | |
|
18 | 1 2 3 4 5 6 7 | cdleme2 | |
19 | 10 11 12 17 18 | syl13anc | |
20 | 9 19 | eqtrid | |
21 | 20 | oveq2d | |
22 | 16 21 | eqtr4d | |
23 | simp11l | |
|
24 | simp2l | |
|
25 | simp3rl | |
|
26 | 2 4 | hlatjcom | |
27 | 23 24 25 26 | syl3anc | |
28 | 27 | oveq1d | |
29 | 28 | oveq2d | |
30 | 22 29 | oveq12d | |
31 | 8 30 | eqtrid | |