| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdleme39.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdleme39.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdleme39.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdleme39.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdleme39.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdleme39.u | ⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) | 
						
							| 7 |  | cdleme39.e | ⊢ 𝐸  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) | 
						
							| 8 |  | cdleme39.g | ⊢ 𝐺  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐸  ∨  ( ( 𝑅  ∨  𝑡 )  ∧  𝑊 ) ) ) | 
						
							| 9 |  | cdleme39a.v | ⊢ 𝑉  =  ( ( 𝑡  ∨  𝐸 )  ∧  𝑊 ) | 
						
							| 10 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | simp12 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 12 |  | simp13 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 13 |  | simp2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) | 
						
							| 14 |  | simp3l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 15 | 1 2 3 4 5 6 | cdleme4 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑅  ∨  𝑈 ) ) | 
						
							| 16 | 10 11 12 13 14 15 | syl131anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑅  ∨  𝑈 ) ) | 
						
							| 17 |  | simp3r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) | 
						
							| 18 | 1 2 3 4 5 6 7 | cdleme2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( ( 𝑡  ∨  𝐸 )  ∧  𝑊 )  =  𝑈 ) | 
						
							| 19 | 10 11 12 17 18 | syl13anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( ( 𝑡  ∨  𝐸 )  ∧  𝑊 )  =  𝑈 ) | 
						
							| 20 | 9 19 | eqtrid | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  𝑉  =  𝑈 ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( 𝑅  ∨  𝑉 )  =  ( 𝑅  ∨  𝑈 ) ) | 
						
							| 22 | 16 21 | eqtr4d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑅  ∨  𝑉 ) ) | 
						
							| 23 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 24 |  | simp2l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  𝑅  ∈  𝐴 ) | 
						
							| 25 |  | simp3rl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  𝑡  ∈  𝐴 ) | 
						
							| 26 | 2 4 | hlatjcom | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  →  ( 𝑅  ∨  𝑡 )  =  ( 𝑡  ∨  𝑅 ) ) | 
						
							| 27 | 23 24 25 26 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( 𝑅  ∨  𝑡 )  =  ( 𝑡  ∨  𝑅 ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( ( 𝑅  ∨  𝑡 )  ∧  𝑊 )  =  ( ( 𝑡  ∨  𝑅 )  ∧  𝑊 ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( 𝐸  ∨  ( ( 𝑅  ∨  𝑡 )  ∧  𝑊 ) )  =  ( 𝐸  ∨  ( ( 𝑡  ∨  𝑅 )  ∧  𝑊 ) ) ) | 
						
							| 30 | 22 29 | oveq12d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐸  ∨  ( ( 𝑅  ∨  𝑡 )  ∧  𝑊 ) ) )  =  ( ( 𝑅  ∨  𝑉 )  ∧  ( 𝐸  ∨  ( ( 𝑡  ∨  𝑅 )  ∧  𝑊 ) ) ) ) | 
						
							| 31 | 8 30 | eqtrid | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) ) )  →  𝐺  =  ( ( 𝑅  ∨  𝑉 )  ∧  ( 𝐸  ∨  ( ( 𝑡  ∨  𝑅 )  ∧  𝑊 ) ) ) ) |