Metamath Proof Explorer


Theorem cdlemg2l

Description: TODO: FIX COMMENT. (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemg2inv.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg2inv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg2j.l = ( le ‘ 𝐾 )
cdlemg2j.j = ( join ‘ 𝐾 )
cdlemg2j.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg2j.m = ( meet ‘ 𝐾 )
cdlemg2j.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion cdlemg2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) 𝑈 ) )

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h 𝐻 = ( LHyp ‘ 𝐾 )
2 cdlemg2inv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 cdlemg2j.l = ( le ‘ 𝐾 )
4 cdlemg2j.j = ( join ‘ 𝐾 )
5 cdlemg2j.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemg2j.m = ( meet ‘ 𝐾 )
7 cdlemg2j.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 1 2 3 4 5 6 7 cdlemg2k ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐺𝑇 ) → ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) = ( ( 𝐺𝑃 ) 𝑈 ) )
9 8 3adant3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) = ( ( 𝐺𝑃 ) 𝑈 ) )
10 9 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐹 ‘ ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) ) = ( 𝐹 ‘ ( ( 𝐺𝑃 ) 𝑈 ) ) )
11 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → 𝐹𝑇 )
13 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → 𝐺𝑇 )
14 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
15 3 5 1 2 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
16 11 13 14 15 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
17 16 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐺𝑃 ) ∈ 𝐴 )
18 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
19 18 5 atbase ( ( 𝐺𝑃 ) ∈ 𝐴 → ( 𝐺𝑃 ) ∈ ( Base ‘ 𝐾 ) )
20 17 19 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐺𝑃 ) ∈ ( Base ‘ 𝐾 ) )
21 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
22 3 5 1 2 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
23 11 13 21 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
24 23 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐺𝑄 ) ∈ 𝐴 )
25 18 5 atbase ( ( 𝐺𝑄 ) ∈ 𝐴 → ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) )
26 24 25 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) )
27 18 4 1 2 ltrnj ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ‘ ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) )
28 11 12 20 26 27 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐹 ‘ ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) )
29 1 2 3 4 5 6 7 cdlemg2fv2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝐹 ‘ ( ( 𝐺𝑃 ) 𝑈 ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) 𝑈 ) )
30 11 14 21 16 12 29 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐹 ‘ ( ( 𝐺𝑃 ) 𝑈 ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) 𝑈 ) )
31 10 28 30 3eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) 𝑈 ) )